FINAL REPORT

Contents: Volume 1 of 2

Text, Summary Tables, and Appendices A-G

Study Title: A Dermal Prenatal Developmental Toxicity Study of

Clarified Oils, Catalytic Cracked in Rats

<u>Laboratory Project ID</u>: WIL-402016

Author: Jeffrey H. Charlap, MS

<u>Test Guidelines</u>: OPPTS 870.3700

OECD Guideline 414

Study Completion Date: 12 July 2012

Performing Laboratory: WIL Research Laboratories, LLC

1407 George Road

Ashland, OH 44805-8946

Sponsor: American Petroleum Institute

1220 L Street, NW

Washington, DC 20005

Total Number of Pages: 394

Clarified Oils, Catalytic Cracked

WIL-402016 American Petroleum Institute

COMPLIANCE STATEMENT

The following is a detailed description of all differences between the practices used in

this study, WIL-402016, and those required by the United States EPA GLP Standards

(40 CFR Part 792), 18 September 1989; the OECD Principles of GLP [C(97) 186/Final],

26 November 1997; WIL Research's SOPs; and the protocol as approved by the Sponsor.

• The Sponsor conducted test substance characterization according to non-GLP

standards and provided the characterization report to WIL Research (presented in

Appendix B).

• The stability of the bulk test substance was not provided; however, it is the

professional judgment of the Sponsor that the formulations are considered stable

under the conditions of the study. The expiration date for the test substance is

unknown.

These exceptions had no effect on the integrity or quality of the study.

The study was conducted in general accordance with the United States EPA Health

Effects Test Guidelines OPPTS 870.3700, Prenatal Developmental Toxicity Study,

August, 1998 and the OECD Guidelines for Testing of Chemicals Guideline 414,

Prenatal Developmental Toxicity Study, 22 January 2001.

Jeffrey H. Charlap, MS

Staff Toxicologist, Developmental and Reproductive Toxicology

Study Director

Date

TABLE OF CONTENTS

VOLU	JME 1	<u>Page</u>
	Compliance Statement	2
	Table of Contents	3
	Index of Tables	6
	Index of Appendices	7
1.	Summary	9
1.1.	Objective	9
1.2.	Study Design	9
1.3.	Results	10
1.4.	Conclusions	12
2.	Introduction	14
2.1.	General Study Information	14
2.2.	Key Study Dates	14
2.3.	Participating Scientist	14
2.4.	WIL Research Key Study Personnel.	15
3.	Study Design	16
4.	Experimental Procedures - Materials and Methods	17
4.1.	Test Substance and Vehicle	17
4.1.1.	Test Substance	17
4.1.2.	Vehicle	17
4.1.3.	Preparation	17
4.1.4.	Sampling and Analyses	18
4.2.	Test System, Animal Receipt, and Acclimation	19
4.3.	Animal Housing	20
4.4.	Diet, Drinking Water, and Maintenance	20
4.5.	Environmental Conditions	21
4.6.	Assignment of Animals to Treatment Groups and Breeding	21

VOLU	JME 1 (continued)	Page
4.7.	Organization of Test Groups, Exposure Levels, and Treatment Regimen	22
5.	Parameters Evaluated	25
5.1.	Maternal Observations during Gestation	25
5.1.1.	Clinical Observations and Survival	25
5.1.2.	Dermal Observations	25
5.1.3.	Body Weights and Gravid Uterine Weights	25
5.1.4.	Food Consumption	26
5.1.5.	Anatomic Pathology and Laparohysterectomy	26
5.1.5.1.	Unscheduled Deaths	26
5.1.5.2.	Gestation Day 20 Laparohysterectomy	26
5.1.5.3.	Organ Weights	28
5.2.	Fetal Morphological Examination	28
5.3.	Data Acquisition and Analysis	29
5.3.1.	Acquisition and Reporting	29
5.3.2.	Statistical Analyses	30
6.	Results and Discussion	32
6.1.	Analyses of Dosing Formulations	32
6.2.	Maternal Clinical Observations and Survival	32
6.3.	Dermal Observations	34
6.4.	Maternal Body Weights and Gravid Uterine Weights	34
6.5.	Maternal Food Consumption	35
6.6.	Anatomic Pathology and Laparohysterectomy	36
6.6.1.	Macroscopic Examinations	36
6.6.2.	Organ Weights	37
6.6.3.	Gestation Day 20 Laparohysterectomy Data	38
6.7.	Fetal Morphological Data	39
6.7.1.	External Malformations and Variations	39
672	Visceral Malformations and Variations	39

VOLUME 1 (continued)		<u>Page</u>
6.7.3.	Skeletal Malformations and Variations	40
6.7.4.	Summary of External, Visceral, and Skeletal Examinations	42
7.	Conclusions	44
8.	Report Review and Approval	45
9.	Quality Assurance Statement	46
10.	References	49
11.	Data Retention	51
12.	Abbreviations	52

INDEX OF TABLES

	VOLUME 1 (continued)	<u>Page</u>
S1.	Summary of Maternal Survival and Pregnancy Status	54
S2.	Summary of Clinical Findings (Daily Examinations)	55
S3.	Summary of Post-Dose Findings.	57
S4.	Summary of Clinical Findings (Dermal Observations)	58
S5.	Summary of Body Weights during Gestation [g]	59
S6.	Summary of Body Weight Changes during Gestation [g]	61
S7.	Summary of Gravid Uterine Wts. and Net Body Wt. Changes [g]	63
S8.	Summary of Food Consumption during Gestation [g/animal/day]	64
S9.	Summary of Food Consumption during Gestation [g/kg/day]	66
S10.	Summary of Maternal Macroscopic Findings	68
S11.	Summary of Organ Wts. and Organ Wts. Relative to Brain Wts. (Gestation Day 20)	69
S12.	Summary of Fetal Data at Scheduled Necropsy	70
S13.	Summary of Fetal Data at Scheduled Necropsy [% per litter]	71
S14.	Summary of Fetuses and Litters with Malformations [absolute no.]	74
S15.	Summary of Litter Proportions of Malformations	75
S16.	Summary of Fetuses and Litters with Variations [absolute no.]	79
S17.	Summary of Litter Proportions of Variations	80

INDEX OF APPENDICES

VO	DLUME 1 (continued)	<u>Page</u>
A.	Study Protocol and Deviations	85
B.	Test Substance Characterization (Sponsor-Provided Data)	123
C.	Analyses of Dosing Formulations (WIL Research Laboratories, LLC)	134
D.	Animal Room Environmental Conditions	157
E.	Scoring Criteria for Dermal Reactions	163
F.	Visceral and Skeletal Findings for Dead Fetus	165
G.	WIL Developmental Historical Control Data Version 3.10 [Crl:CD(SD) Rats]	167
VOL	UME 2	
H.	Individual Animal Data	182
	A1. Individual Clinical Observations (Daily Examinations)	183
	A2. Individual Post-Dose Observations (At Time of Dosing)	220
	A3. Individual Post-Dose Observations (1-2 Hours Post-Dosing)	224
	A4. Individual Dermal Observations	231
	A5. Individual Body Weights during Gestation [g]	246
	A6. Individual Body Weight Changes during Gestation [g]	251
	A7. Individual Gravid Uterine Wts. and Net Body Wt. Changes [g]	256
	A8. Individual Food Consumption during Gestation [g/animal/day]	261
	A9. Individual Food Consumption during Gestation [g/kg/day]	266
	A10. Individual Maternal Macroscopic Findings	271

VOLUME 2 (continued)	<u>Page</u>
A11. Individual Organ Weights [g] (Gestation Day 20)	277
A12. Individual Organ Weights Relative to Brain Weights [g/100 g] (Gestation Day 20)	282
A13. Individual Fetal Data at Scheduled Necropsy	287
A14. Individual Fetal Data at Scheduled Necropsy [% per litter]	292
A15. Individual Fetal Weights [g]	297
A16. Individual Fetal External, Visceral and Skeletal Findings	302

1. **SUMMARY**

1.1. OBJECTIVE

The objectives of this study were to determine the effects of prenatal, dermal exposure to the test substance on pregnant rats and developing offspring, to provide data to verify/expand the domain of the polycyclic aromatic compounds (PAC) prenatal models for predicting the toxicity of high-boiling petroleum substances from their PAC content, and to further test the hypothesis that developmental toxicity endpoints are more sensitive to effects of high-boiling petroleum substances than other reproductive endpoints, such as fertility or reproductive organ weight and histopathology.

1.2. STUDY DESIGN

The test substance, clarified oils, catalytic cracked (CAS no. 64741-62-4), in the vehicle (acetone) was administered by dermal application to the dorsal scapular area (approximately 10% of total body surface area) of 3 groups (Groups 3-5) of 25 bred female Crl:CD(SD) rats once daily from gestation days 0 through 19; animals were exposed to the test substance for 6 hours each day. Exposure levels were 5, 25, and 50 mg/kg/day administered at a dosage volume of 1.5 mL/kg. A concurrent vehicle control group (Group 2) composed of 25 bred females received the vehicle on a comparable regimen. A concurrent sham control group (Group 1) was subjected to the same procedures (i.e. shaving, collaring, sham dosing with a glass rod, and removal of residual test substance) as Groups 2-5; however, no vehicle or test substance was applied to these animals. The females were approximately 13 weeks of age at the initiation of test substance exposure. All animals were observed twice daily for mortality and moribundity. Clinical observations, body weights, and food consumption were recorded at appropriate intervals. On gestation day 20, a laparohysterectomy was performed on each surviving female. The uteri, placentae, and ovaries were examined, and the numbers of fetuses, early and late resorptions, total implantations, and corpora lutea were recorded. Gravid uterine weights were recorded, and net body weights and net body weight changes were calculated. Selected organs from all females surviving to the

scheduled necropsy were weighed. The fetuses were weighed, sexed, and examined for external, visceral, and skeletal malformations and developmental variations.

1.3. RESULTS

Test substance-related mortality was noted at 50 mg/kg/day, as 2 females were found dead on gestation days 18 and 19. Noteworthy clinical findings for these females included red and/or yellow material around the urogenital area, nose, and eyes, decreased defecation, pale body, and/or red vaginal discharge at the daily examinations and/or approximately 1 to 2 hours following dose administration. Macroscopic findings for these females consisted of red matting on the skin, dark red contents in the vagina, and/or pale liver, brain, and pituitary gland. All other females in the sham control, vehicle control, 5, 25, and 50 mg/kg/day groups survived to the scheduled necropsy.

Test substance-related increased incidences of yellow and/or red material in the urogenital area were noted at 5, 25, and 50 mg/kg/day at the daily examinations and/or approximately 1 to 2 hours following dose administration generally throughout the treatment period. Occurrences of red vaginal discharge were noted in the 50 mg/kg/day group and were attributed to the postimplantation loss noted in this group. Additionally, a test substance-related, adverse occurrence of pale body was noted for 2 surviving females in the 50 mg/kg/day group towards the end of the treatment period at the daily examinations. There were no other test substance-related clinical findings noted in any exposure group. Red material around the nose and/or eyes were noted at the daily examinations in all groups, including the sham and vehicle control groups, generally throughout the treatment period. Because these findings were found at similar frequencies across all groups, they were likely a result of the animals' inability to groom and discomfort caused by the collars and therefore not attributed to test substance administration. No remarkable dermal observations were noted in the 5, 25, and 50 mg/kg/day groups.

Test substance-related mean body weight losses were noted in the 25 and 50 mg/kg/day groups at the start of the treatment period (gestation days 0-3), followed by mean body weight gains that were similar to the vehicle control group during gestation days 3-12. Lower mean body weight gains were noted in the 25 and 50 mg/kg/day groups for the remainder of the treatment period (gestation days 12-20); these differences were considered test substance-related. The reductions in mean body weight gain in the 25 and 50 mg/kg/day groups were partially attributed to the decreased mean number of viable fetuses and lower mean fetal weights in these groups, especially during the latter half of gestation. Test substance-related lower mean food consumption was noted generally throughout the treatment period in the 25 and 50 mg/kg/day groups. Lower mean net body weight in the 50 mg/kg/day group and lower mean net body weight changes and gravid uterine weights in the 25 and 50 mg/kg/day groups were noted compared to the vehicle control group; the reduction in mean gravid uterine weights in these groups was attributed to the decreased number of viable fetuses and lower mean fetal weights noted at these exposure levels. Mean net body weights in the 5 and 25 mg/kg/day groups and mean maternal body weights, body weight gains, net body weight gain, gravid uterine weight, and food consumption in the 5 mg/kg/day group were unaffected by test substance administration.

In the 50 mg/kg/day group, 1 female was noted with dark red contents in the uterus; this finding was considered test substance-related. No remarkable macroscopic findings were noted at 5 and 25 mg/kg/day. Test substance-related, lower mean thymus weights (absolute and relative to brain) were noted in the 25 and 50 mg/kg/day groups compared to the vehicle control group. No test substance-related mean organ weight changes were noted at 5 mg/kg/day.

An increased mean litter proportion of postimplantation loss (early and/or late resorptions) and a corresponding lower mean number and mean litter proportion of viable fetuses was noted at 25 and 50 mg/kg/day. Mean male, female, and combined fetal weights in the 25 and 50 mg/kg/day groups were also lower compared to the vehicle

control group. There were no test substance-related effects on intrauterine growth and survival at 5 mg/kg/day.

Increased mean litter proportions of sternebra(e) nos. 5 and/or 6 unossified, reduced ossification of the vertebral arches, reduced ossification of the skull, and pubis unossified were noted in the 50 mg/kg/day group. In addition, a decreased mean litter proportion of cervical centrum no. 1 ossified was noted at 50 mg/kg/day. An increased mean litter proportion of reduced ossification of the skull was also noted in the 25 mg/kg/day group. These findings were considered secondary to the reduced fetal weights noted in the 25 and 50 mg/kg/day groups. There were no test substance-related malformations noted at 5, 25, and 50 mg/kg/day or developmental variations noted at 5 mg/kg/day.

The vehicle control group performed similarly to the sham control group during the study, indicating that the vehicle (acetone) does not produce maternal or developmental toxicity.

1.4. Conclusions

Maternal toxicity was evidenced by mortality at 50 mg/kg/day and lower mean food consumption with corresponding mean body weight losses and lower mean body weight gains generally throughout the treatment period in the 25 and 50 mg/kg/day groups. Additionally, lower mean thymus weights were noted in the 25 and 50 mg/kg/day groups. No evidence of maternal toxicity was noted at 5 mg/kg/day. Developmental effects were noted in the 25 and 50 mg/kg/day groups as evidenced by increased mean litter proportions of postimplantation loss (early resorptions at 25 mg/kg/day and early and late resorptions at 50 mg/kg/day) with a corresponding decrease in the mean numbers and litter proportions of viable fetuses. In addition, lower mean male, female, and combined fetal weights were noted in the 25 and 50 mg/kg/day groups. Test substance-related fetal developmental variations (sternebra[e] nos. 5 and/or 6 unossified, cervical centrum no. 1 ossified, reduced ossification of the vertebral arches, reduced ossification of the skull, and/or pubis unossified) were noted in the 50 mg/kg/day group and reduced ossification

of the skull was also noted in the 25 mg/kg/day group. These findings were considered secondary to the lower fetal weights noted in these groups. Intrauterine growth and survival and external, visceral, and skeletal fetal morphology were unaffected by test substance administration at an exposure level of 5 mg/kg/day.

Based on these results, an exposure level of 5 mg/kg/day was considered to be the no-observed-adverse-effect level (NOAEL) for maternal toxicity and embryo/fetal development when clarified oils, catalytic cracked was administered by dermal application to bred Crl:CD(SD) rats.

2. Introduction

2.1. GENERAL STUDY INFORMATION

This report presents the data from "A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats." Due to software spacing constraints, the study title is presented as "Rat Dermal Dev Tox Study of Clarified Oils, Catalytic Cracked" on the report tables.

The study protocol and deviations from the protocol are presented in Appendix A. A list of abbreviations potentially used in this report is presented in Section 12.

The computer protocol reference number and type of data collected were identified as follows:

Computer Protocol	Type of Data Collected
WIL-402016	Main study data

2.2. KEY STUDY DATES

Date(s)	Event(s)
31 August 2011	Study initiation date (date protocol signed
	by Study Director)
1 September 2011	Experimental starting date (animal receipt)
13 September 2011	Experimental start date (initiation of test
	substance exposure; first gestation day 0)
13 September - 7 October 2011	Test substance exposure period
8 October 2011	Last laparohysterectomy
8 November 2011	Experimental termination/completion date
	(last fetal skeletal examination)

2.3. PARTICIPATING SCIENTIST

Analytical Chemistry

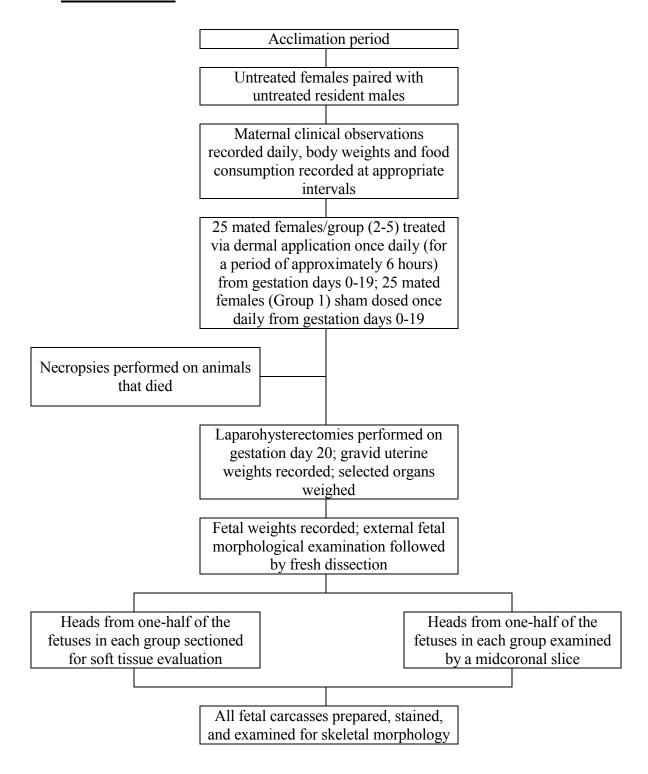
Amanda M. Stanton, BA

WIL Research Laboratories, LLC

¹ Date ranges represent the first and last dates of evaluation.

2.4. WIL RESEARCH KEY STUDY PERSONNEL

Eric S. Bodle, PhD Heather L. Johnson, BS, RQAP-GLP Sally A. Keets, AS Carol A. Kopp, BS, LAT


Gwendalyn M. Maginnis, DVM John S. Moore, BS, RLATG

Theresa M. Rafeld, CPhT Michael J. Schlosser, PhD, DABT Bennett J. Varsho, MPH, DABT Robert A. Wally, BS Assistant Director, Analytical Chemistry Manager, Quality Assurance

Senior Operations Manager, Vivarium
Manager, Gross Pathology and
Developmental Toxicology Laboratory
Clinical Veterinarian
Operations Manager, Developmental,
Reproductive, and Neurotoxicology
Group Manager, Formulations Laboratory
Vice President, Analytical, Metabolism, &
In Vitro Toxicology Services
Director, Operations
Operations Manager, Reporting &

Technical Support Services

3. STUDY DESIGN

4. EXPERIMENTAL PROCEDURES - MATERIALS AND METHODS

4.1. TEST SUBSTANCE AND VEHICLE

4.1.1. TEST SUBSTANCE

The test substance, clarified oils, catalytic cracked, was received from EPL Archives, Inc., Sterling, VA, on behalf of the Sponsor on 25 August 2011, as follows:

Identification	Physical Description		
Clarified oils, catalytic cracked (CAS No. 64741-62-4; Site #12, Sample #2) [WIL ID no. 110132]	Dark brown opaque, viscous liquid		

A test substance characterization was provided by the Sponsor and is presented in Appendix B. For purposes of dose calculations, the purity of the test substance was considered to be 100.0%. The test substance was stored at room temperature, protected from light, and was considered stable under these conditions. A reserve sample of the test substance was collected and stored in the WIL Research Archives.

4.1.2. VEHICLE

The vehicle used in preparation of the test substance formulations and for administration to the vehicle control group was acetone, NF (lot nos. ZE0696 and ZX0140, exp. dates: 31 March 2012 and 11 November 2012, respectively, manufactured by Spectrum Chemical Manufacturing Corporation, New Brunswick, NJ).

4.1.3. PREPARATION

A sufficient amount of acetone was transferred to a formulation container approximately weekly for administration to the vehicle control group (Group 2); aliquots were prepared for daily dispensation and stored at room temperature, protected from light.

Dosing formulations were prepared at the test substance concentrations indicated in the following table:

Group		Exposure Level	Test Substance Concentration ^a
Number	Treatment	(mg/kg/day)	(mg/mL)
1	Sham control	NA	NA
2	Vehicle control	0	0
3	Test substance ^b	5	3.3
4	Test substance ^b	25	16.7
5	Test substance ^b	50	33.3

^a = The dosing formulations were not adjusted for purity.

NA = Not applicable.

The test substance formulations were weight/volume (test substance/vehicle) mixtures. The test substance formulations were prepared approximately weekly as single formulations for each exposure level, divided into aliquots for daily dispensation, and stored at room temperature, protected from light. The test substance formulations were stirred continuously throughout the preparation, sampling, and dose administration procedures.

The first dosing formulations were visually inspected by the Study Director and were found to be visibly homogeneous and acceptable for administration.

4.1.4. SAMPLING AND ANALYSES

Analyses to demonstrate the homogeneity, stability, and resuspension homogeneity of the test substance formulations at concentrations of 1 and 100 mg/mL following 11 and 18 days of room temperature storage were conducted previously (Haubenstricker, 2011, WIL-402029). Therefore, stability and resuspension homogeneity analyses were not conducted during the current study.

Samples for homogeneity and concentration analysis were collected from the top, middle, and bottom strata of each dosing formulation (including the vehicle control group)

b = The test substance for this study was clarified oils, catalytic cracked (CAS no. 64741-62-4).

prepared for use on the first and last days of dosing. One set of samples from each collection was subjected to the appropriate analyses. The remaining set of samples was stored at room temperature as back-up. All analyses were conducted by the WIL Research Analytical Chemistry Department using a validated gas chromatography (GC) with flame ionization detection method. Details about the methodology and results of these analyses are presented in Appendix C, and the results are summarized in Section 6.1.

4.2. TEST SYSTEM, ANIMAL RECEIPT, AND ACCLIMATION

Sexually mature, virgin female Sprague Dawley [Crl:CD(SD)] rats were used as the test system on this study. This species and strain of animal is recognized as appropriate for developmental toxicity studies. WIL Research has historical control data on the background incidence of fetal malformations and developmental variations in the Crl:CD(SD) rat. This animal model has been proven to be susceptible to the effects of developmental toxicants. The number of animals selected for this study (see Section 4.7.) was based on the United States EPA Health Effects Test Guidelines OPPTS 870.3700, Prenatal Developmental Toxicity Study, August 1998 and the OECD Guidelines for Testing of Chemicals Guideline 414, Prenatal Developmental Toxicity Study, January 2001.

Crl:CD(SD) rats (155 females) were received in good health from Charles River Laboratories, Inc., Portage, MI, on 1 September 2011. The animals were approximately 79 days old upon receipt. Each female was examined by a qualified biologist on the day of receipt. The day following receipt, all animals were weighed and clinical observations were recorded. Each rat was uniquely identified by a Monel[®] metal ear tag displaying the animal number and housed for 12 days for acclimation purposes. During the acclimation period, the rats were observed twice daily for mortality and changes in general appearance and behavior.

Animals were acclimated to wearing Elizabethan-style collars on an incremental basis, starting with approximately 1 hour and ending with approximately 24 hours of acclimation, starting approximately 1 week prior to the initiation of dose application as outlined below:

Study Day	Approximate Acclimation
	Period (Hours)
-7	1
-6	4
-5	8
-4	24

4.3. Animal Housing

Upon arrival and until pairing, all rats were individually housed in clean, stainless steel wire-mesh cages suspended above cage-board. The cage-board was changed at least 3 times per week. The rats were paired for mating in the home cage of the male. Following positive evidence of mating, the females were returned to individual suspended wire-mesh cages; nesting material was not required as the females were euthanized prior to the date of expected parturition. Animals were maintained in accordance with the *Guide for the Care and Use of Laboratory Animals* (National Research Council, 1996). The animal facilities at WIL Research are fully accredited by AAALAC International.

4.4. **DIET, DRINKING WATER, AND MAINTENANCE**

The basal diet used in this study, PMI Nutrition International, LLC Certified Rodent LabDiet[®] 5002, was a certified feed with appropriate analyses performed by the manufacturer and provided to WIL Research. Feed lots used during the study were documented in the study records. The feeders were changed and sanitized once per week. Municipal water supplying the facility was regularly sampled for contaminants according to WIL Research's SOPs. The results of the diet and water analyses are maintained at WIL Research. No contaminants were present in animal feed or water at concentrations

sufficient to interfere with the objectives of this study. Reverse osmosis-purified (on-site) drinking water, delivered by an automatic watering system, and the basal diet were provided *ad libitum* throughout the acclimation period and during the study. The animal feed containers were provided without savers and lids to accommodate feeding with collars.

4.5. Environmental Conditions

All rats were housed throughout the acclimation period and during the study in an environmentally controlled room. The room temperature and humidity controls were set to maintain environmental conditions of $71^{\circ}F \pm 5^{\circ}F$ ($22^{\circ}C \pm 3^{\circ}C$) and $50\% \pm 20\%$, respectively. Room temperature and relative humidity data were monitored continuously and were scheduled for automatic collection on an hourly basis. These data are summarized in Appendix D. Actual mean daily temperature ranged from $66.8^{\circ}F$ to $70.9^{\circ}F$ ($19.3^{\circ}C$ to $21.6^{\circ}C$) and mean daily relative humidity ranged from 42.3% to 61.5% during the study. Fluorescent lighting provided illumination for a 12-hour light (0600 hours to 1800 hours)/12-hour dark photoperiod. The light status (on or off) was recorded once every 15 minutes. The 12-hour light/12-hour dark photoperiod was interrupted as necessary to allow for the performance of protocol-specified activities. Air handling units were set to provide a minimum of 10 fresh air changes per hour.

4.6. <u>Assignment of Animals to Treatment Groups and Breeding Procedures</u>

At the conclusion of the acclimation period, all available females were weighed and examined in detail for physical abnormalities. At the discretion of the Study Director, each animal judged to be in good health and meeting acceptable body weight requirements was placed in a suspended wire-mesh cage with a resident male from the same strain and source for breeding. Resident males were untreated, sexually mature rats utilized exclusively for breeding. These rats were maintained under similar laboratory conditions as the females. A breeding record containing the male and female

identification numbers and the dates of cohabitation was maintained. The selected females were approximately 13 weeks old when paired for breeding.

Positive evidence of mating was confirmed by the presence of a vaginal copulatory plug or the presence of sperm in a vaginal lavage and verified by a second biologist. Each mating pair was examined daily. The day on which evidence of mating was identified was termed gestation day 0 and the animals were separated.

The experimental design consisted of 3 test substance-treated groups, 1 vehicle control group, and 1 sham control group composed of 25 rats per group. The bred females were assigned to groups using a WTDMSTM computer program which randomized the animals based on stratification of the gestation day 0 body weights in a block design. Animals not assigned to study were euthanized by carbon dioxide inhalation and discarded. Body weight values ranged from 224 g to 284 g on gestation day 0.

4.7. ORGANIZATION OF TEST GROUPS, EXPOSURE LEVELS, AND TREATMENT REGIMEN

On the day prior to the initiation of dose administration, and as often as necessary thereafter, the hair was clipped (in a manner that would not abrade the skin) from the dorsal scapular area; repeated clippings were performed prior to or at least 2-4 hours after dose administration. A different set of clippers was used for the sham control, vehicle control, and the test substance-treated groups to avoid the potential for cross-contamination; a record of hair removal is retained in the raw data. The vehicle or test substance was applied evenly to the clipped, unabraded skin and spread evenly using a glass rod (to ensure contact with an area of approximately 10% of the total body surface area) once daily (for a period of 6 hours) during gestation days 0-19.

The four corners of the application site were marked with indelible ink to allow proper identification of the treated and untreated skin. Elizabethan-style collars were applied to all animals to minimize ingestion of the test substance. The collars were worn continually during the exposure period and removed only during weighing procedures.

At the end of the 6-hour exposure period, the test sites were gently patted using a disposable paper towel in an effort to remove any remaining test substance or vehicle from the skin. When needed, the test site was gently patted with gauze moistened with acetone and then patted again with dry gauze or a dry disposable paper towel. The area of test substance application was measured and recorded once per week for 2 representative (close to mean body weight) animals in each group. The total percentage of body surface to which the test substance was applied was to be approximately 10% of the total body surface area. The mean area of coverage was calculated as follows:

Total body surface area (cm²) =
$$K \cdot body$$
 weight (grams) (2/3)
Where:

K = 9 for rats (Freireich *et al.*, 1966)

The following table presents the approximate percentages of body surface area covered by the test substance for each group/week.

Percent Coverage (%)					
Group	1	2	3	4	5
Exposure Level (mg/kg/day)	NA	0	5	25	50
Study Week 0	10	9.7	11.3	10.8	9.9
Study Week 1	9.1	10.0	9.7	9.9	10.2
Study Week 2	8.9	8.9	8.4	8.6	9.2
Study Week 3	7.4	7.2	7.8	7.8	8.4
Mean Coverage	8.8	8.9	9.3	9.3	9.4
Standard Deviation	1.1	1.2	1.5	1.4	0.8

NA = Not applicable

Individual dosages and dose volumes were based on the most recently recorded body weights to provide the correct mg/kg/day dose. All animals were dosed at approximately the same time each day.

The animals in the sham control group were subjected to the same procedures (*i.e.* shaving, collaring, sham dosing with glass rod, and sham removal of residual test substance) as the vehicle control and test substance-treated animals, but were not exposed to the vehicle or test substance.

The following table presents the study group assignment:

_				Number
Group		Exposure Level	Dose Volume	of
Number	Treatment	(mg/kg/day)	(mL/kg)	Females
1	Sham Control	NA	NA	25
2	Vehicle Control	0	1.5	25
3	Test Substance ^a	5	1.5	25
4	Test Substance ^a	25	1.5	25
5	Test Substance ^a	50	1.5	25

^a = The test substance for this study was clarified oils, catalytic cracked (CAS no. 64741-62-4).

NA = Not applicable.

Exposure levels were determined based on the results of previous studies and were provided by the Sponsor Representative after consultation with the WIL Study Director.

The selected route of administration for this study was dermal as this is a potential route of exposure for humans.

5. PARAMETERS EVALUATED

5.1. MATERNAL OBSERVATIONS DURING GESTATION

5.1.1. CLINICAL OBSERVATIONS AND SURVIVAL

All rats were observed twice daily, once in the morning and once in the afternoon, for moribundity and mortality. Individual clinical observations were recorded from gestation days 0 through 20 (prior to dose administration during the treatment period). Animals were also observed for signs of toxicity at the time of dose administration and approximately 1-2 hours following sham or dose administration. The absence or presence of findings was recorded for individual animals.

5.1.2. DERMAL OBSERVATIONS

The application site was scored daily (prior to dose administration) during the treatment period for erythema and edema in accordance with a 4-step grading system (Draize, 1965) of very slight, slight, moderate, and severe as described in Appendix E. Other remarkable dermal findings, if present, were recorded.

5.1.3. BODY WEIGHTS AND GRAVID UTERINE WEIGHTS

Individual maternal body weights were recorded on gestation days 0, 3, 6, 9, 12, 15, 18, and 20. Group mean body weights were calculated for each of these days. Mean body weight changes were calculated for each corresponding interval and also for gestation days 0-20. When body weights could not be determined for an animal during a given interval (due to an unscheduled death, *etc.*), group mean values were calculated for that interval using the available data. The time periods when body weight values were unavailable for a given animal were designated as "NA" on the individual report tables. Collars were removed from the animals during the collection of body weights.

Gravid uterine weight was collected and net body weight (the gestation day 20 body weight exclusive of the weight of the uterus and contents) and net body weight change (the gestation day 0-20 body weight change exclusive of the weight of the uterus and

contents) were calculated and presented for each gravid female at the scheduled laparohysterectomy.

5.1.4. <u>FOOD CONSUMPTION</u>

Individual food consumption was recorded on gestation days 0, 3, 6, 9, 12, 15, 18, and 20. Food intake was reported as g/animal/day and g/kg/day for the corresponding body weight change intervals. When food consumption could not be determined for an animal during a given interval (due to an unscheduled death, weighing error, food spillage, *etc.*), group mean values were calculated for that interval using the available data. The time periods when food consumption values were unavailable for a given animal were designated as "NA" on the individual report tables.

5.1.5. ANATOMIC PATHOLOGY AND LAPAROHYSTERECTOMY

5.1.5.1. <u>Unscheduled Deaths</u>

A gross necropsy was performed on females that died during the course of the study. The cranial, thoracic, abdominal, and pelvic cavities were opened and the contents examined. Maternal tissues were retained in 10% neutral-buffered formalin for possible future histopathologic examination as described in Section 5.1.5.2. The number and location of implantation sites, corpora lutea, and viable fetuses were recorded. The females and all remaining products of conception were discarded.

5.1.5.2. GESTATION DAY 20 LAPAROHYSTERECTOMY

Laparohysterectomies and macroscopic examinations were performed blind to treatment group. All surviving females were euthanized on gestation day 20 by carbon dioxide inhalation. The cranial, thoracic, abdominal, and pelvic cavities were opened by a ventral mid-line incision, and the contents were examined. In all instances, the *postmortem* findings were correlated with the *antemortem* comments, and any abnormalities were recorded. The uterus and ovaries were then exposed and excised. The number of corpora lutea on each ovary was recorded. The trimmed uterus was weighed and opened, and the number and location of all fetuses, early and late resorptions, and the total number of

implantation sites were recorded. The placentae were also examined. The individual uterine distribution of implantation sites was documented using the following procedure. All implantation sites, including resorptions, were numbered in consecutive order beginning with the left distal to the left proximal uterine horn, noting the position of the cervix, and continuing from the right proximal to the right distal uterine horn.

The following tissues and organs were collected and placed in 10% neutral-buffered formalin for possible future analysis:

Treated skin Brain
Untreated skin (right hindlimb)
Liver (2 sections)

Brain
Thymus
All gross lesions^a

Uteri with no macroscopic evidence of implantation were opened and subsequently placed in 10% ammonium sulfide solution for detection of early implantation loss (Salewski, 1964).

Intrauterine data were summarized using 2 methods of calculation. An example of each method of calculation follows:

1. Group Mean Litter Basis:

2. Proportional Litter Basis:

Summation Per Group (%) =
$$\frac{\text{Sum of Postimplantation Loss/Litter (\%)}}{\text{No. Litters/Group}}$$

^a = Representative sections of corresponding organs from a sufficient number of controls were retained for comparison.

Where:

Postimplantation Loss/Litter (%) =
$$\frac{\text{Resorptions (Early/Late)/Litter}}{\text{No. Implantation Sites/Litter}} \times 100$$

5.1.5.3. ORGAN WEIGHTS

The liver, brain, and thymus were weighed from all animals euthanized at the scheduled necropsy. Organ to brain weight ratios were calculated.

5.2. <u>FETAL MORPHOLOGICAL EXAMINATION</u>

Fetal examinations were performed blind to treatment group. Each viable fetus was examined externally, individually sexed, weighed, euthanized by a subcutaneous injection of sodium pentobarbital in the scapular region (if necessary), and tagged for identification. Fetal tags contained the WIL Research study number, the female number, and the fetus number. The detailed external examination of each fetus included, but was not limited to, an examination of the eyes, palate, and external orifices, and each finding was recorded. Nonviable fetuses (if the degree of autolysis was minimal or absent) were examined, the crown-rump length measured, weighed, sexed, and tagged individually. Crown-rump measurements and degrees of autolysis were recorded for late resorptions, a gross external examination was performed (if possible), and the tissues were discarded.

Each viable fetus was subjected to a visceral examination using a modification of the Stuckhardt and Poppe fresh dissection technique to include the heart and major blood vessels (Stuckhardt and Poppe, 1984). The sex of each fetus was confirmed by internal examination. Fetal kidneys were examined and graded for renal papillae development (Woo and Hoar, 1972). Heads from approximately one-half of the fetuses in each litter were placed in Bouin's fixative for subsequent soft-tissue examination by the Wilson sectioning technique (Wilson, 1965). The heads from the remaining one-half of the fetuses were examined by a midcoronal slice. All carcasses were eviscerated and fixed in 100% ethyl alcohol.

Following fixation in alcohol, each fetus was macerated in potassium hydroxide and stained with Alizarin Red S (Dawson, 1926) and Alcian Blue (Inouye, 1976). Fetuses were then examined for skeletal malformations and developmental variations.

External, visceral, and skeletal findings were recorded as developmental variations (alterations in anatomic structure that are considered to have no significant biological effect on animal health or body conformity and/or occur at high incidence, representing slight deviations from normal) or malformations (those structural anomalies that alter general body conformity, disrupt or interfere with normal body function, or may be incompatible with life). Visceral and skeletal findings for the dead fetus are presented in Appendix F.

The fetal developmental findings were summarized by: 1) presenting the incidence of a given finding both as the number of fetuses and the number of litters available for examination in the group; and 2) considering the litter as the basic unit for comparison and calculating the number of affected fetuses in a litter on a proportional basis as follows:

Summation per Group (%) = $\frac{\text{Sum of Viable Fetuses Affected/Litter (\%)}}{\text{No. Litters/Group}}$

Where:

Viable Fetuses Affected/Litter (%) = $\frac{\text{No. Viable Fetuses Affected/Litter}}{\text{No. Viable Fetuses/Litter}}$ x 100

5.3. DATA ACQUISITION AND ANALYSIS

5.3.1. ACQUISITION AND REPORTING

Program/System	Description		
Archive Management System (AMS)	In-house developed application for storage, maintenance, and retrieval of information for archived materials (<i>e.g.</i> , lab books, study data, wet tissues, slides, <i>etc.</i>)		
InSight® Publisher	Electronic publishing system (output is Adobe Acrobat, PDF)		

WIL-402016 American Petroleum Institute

Program/System	Description		
Master Schedule	Maintains the master schedule for the company.		
Metasys DDC Electronic Environmental Control System	Controls and monitors animal room environmental conditions.		
Microsoft® Office 2002 and 2007	Used in conjunction with the publishing software to generate study reports.		
Provantis Dispense™	Comprehensive system (Instem LSS Limited) to manage test materials, including receipt, formulation instructions, and accountability.		
WIL Formulations Dispense System (WFDS)	In-house developed system for use in conjunction with Provantis Dispense TM to ensure proper storage and use of formulations.		
WIL Metasys	In-house developed system used to record and report animal room environmental conditions.		
WIL Toxicology Data Management System TM (WTDMS TM)	In-house developed system used for collection and reporting of in-life and <i>postmortem</i> data.		
Note: Version numbers of WTDMS TM	programs used for the study are presented on the		

Note: Version numbers of WTDMSTM programs used for the study are presented on the report data tables (reporting programs); version numbers and release dates are otherwise maintained in the study records and/or facility records.

5.3.2. STATISTICAL ANALYSES

All statistical tests were performed using WTDMSTM unless otherwise noted. Analyses were conducted using two-tailed tests (except as noted otherwise) for minimum significance levels of 1% and 5%, comparing each test substance-treated group to the vehicle control group (Group 2). In addition, the vehicle control group (Group 2) was compared separately to the sham control group (Group 1). Each mean was presented with the standard deviation (S.D.), standard error (S.E.), and the number of animals (N) used to calculate the mean. Data obtained from nongravid animals were excluded from statistical analyses. Due to the use of significant figures and the different rounding conventions inherent in the types of software used, the means and standard deviations on the summary and individual tables may differ slightly. Therefore, the use of reported individual values to calculate subsequent parameters or means will, in some instances, yield minor variations from those listed in the report data tables. Where applicable, the litter was used as the experimental unit.

Mean maternal body weights (absolute and net), body weight changes (absolute and net), and food consumption, gravid uterine weights, numbers of corpora lutea, implantation sites, and viable fetuses, fetal body weights (separately by sex and combined), and organ weights were subjected to a parametric one-way ANOVA (Snedecor and Cochran, 1980) to determine intergroup differences. If the ANOVA revealed significant (p<0.05) intergroup variance, Dunnett's test (Dunnett, 1964) or a two-sample t-test (Snedecor and Cochran, 1980), as appropriate, was used to compare the test substance-treated groups to the vehicle control group and the vehicle control group to the sham control group. Mean litter proportions (percent per litter) of prenatal data (viable and nonviable fetuses, early and late resorptions, total resorptions, pre- and postimplantation loss, and fetal sex distribution), total fetal malformations and developmental variations (external, visceral, skeletal, and combined) and each particular external, visceral, and skeletal malformation or variation were subjected to the Kruskal-Wallis nonparametric ANOVA test (Kruskal and Wallis, 1952) to determine intergroup differences. If the ANOVA revealed significant (p<0.05) intergroup variance, Dunn's test (Dunn, 1964) was used to compare the test substance-treated groups to the vehicle control group and the vehicle control group to the sham control group.

6. RESULTS AND DISCUSSION

6.1. Analyses of Dosing Formulations

Analyses of Dosing Formulations Report: Appendix C

The analyzed dosing formulations were within WIL Research's SOP range for suspensions (85% to 115%) and were homogeneous. Based on these results, the protocol-specified dosages of test substance were administered to the animals. The test substance was not detected in the vehicle formulation that was administered to the control group (Group 1).

Results of the analyses of dosing formulations are summarized below.

Text Table 1. Results of Homogeneity and Concentration Analyses

	Group 2	Group 3	Group 4			
	(3.3 mg/mL)	(16.7 mg/mL)	(33.3 mg/mL)			
Homogeneity and Concentration Assessment of the 12 September 2011 Formulations						
Mean Concentration (mg/mL)	3.23	16.5	32.5			
RSD (%)	7.3	1.6	1.6			
Mean % of Target	97.8	98.9	97.6			
Homogeneity and Concentration Assessment of the 30 September 2011 Formulations						
Mean Concentration (mg/mL)	3.35	16.9	33.0			
RSD (%)	0.41	1.2	0.94			
Mean % of Target	102	101	99.1			

6.2. MATERNAL CLINICAL OBSERVATIONS AND SURVIVAL

Summary Data: Table S1, Table S2, Table S3

Individual Data: Table A1, Table A2, Table A3

Test substance-related mortality was noted at 50 mg/kg/day. Female nos. 26452 and 26314 in the 50 mg/kg/day group were found dead on gestation days 18 and 19, respectively. Both females were noted with yellow and/or red material around the urogenital area, nose, and eyes and decreased defecation at the daily examinations intermittently throughout the treatment period until the day of death; single occurrences

of red material in the urogenital area were noted for each female 1 to 2 hours following dose administration. In addition, female no. 26452 was noted with a single occurrence of red vaginal discharge 1 to 2 hours following dose administration on gestation day 16. On the day prior to death, both females were noted with a pale body. All other females in the 50 mg/kg/day group survived to the scheduled necropsy. All females in the sham control, vehicle control, 5, and 25 mg/kg/day groups survived to the scheduled necropsy on gestation day 20.

Clinical findings of red and/or yellow material in the urogenital area were noted in all groups, including the sham and vehicle control groups, generally throughout the treatment period (gestation days 0-20) at the daily examinations and/or 1 to 2 hours following dose administration. Although these findings were noted in all groups, they occurred at a much greater frequency in the test substance-treated groups and were therefore considered test substance-related at exposure levels of 5, 25, and 50 mg/kg/day. Test substance-related occurrences of red vaginal discharge were noted for 2 surviving females in the 50 mg/kg/day group during gestation days 16-19 at 1 to 2 hours following dose administration. In addition, 2 surviving females in the 50 mg/kg/day group were noted with a pale body during gestation days 17-19 at the daily examinations; this finding, which was also noted in both females that were found dead in this group, was considered test substance-related and adverse.

Red material around the nose and/or eyes were noted at the daily examinations in all groups, including the sham and vehicle control groups, generally throughout the treatment period (gestation days 1-20). Because these findings were found at similar frequencies across all groups, they were likely a result of the animals' inability to groom and discomfort caused by the collars; therefore, these findings were not attributed to test substance administration.

No other test substance-related clinical findings were noted at the daily examinations or approximately 1 to 2 hours following dose administration at any exposure level. Other

findings noted in the treated groups, including hair loss on various body surfaces and decreased defecation, occurred infrequently, at similar frequencies in the vehicle control group, and/or in a manner that was not dose-related.

6.3. DERMAL OBSERVATIONS

Summary Data: Table S4
Individual Data: Table A4

No remarkable dermal observations were noted at any exposure level. Observations noted in the treated groups occurred infrequently, at similar frequencies in the vehicle control group, and/or in a manner that was not dose-related.

Dermal observations noted in the vehicle control group were similar to the sham control group. Differences from the sham control group were slight and attributed to biological variability.

6.4. MATERNAL BODY WEIGHTS AND GRAVID UTERINE WEIGHTS

Summary Data: Table S5, Table S6, Table S7 Individual Data: Table A5, Table A6, Table A7

Test substance-related mean body weight losses were noted in the 50 mg/kg/day group at the start of the treatment period (gestation days 0-3); the difference was significant (p<0.01). Mean body weight gains in the 25 and 50 mg/kg/day groups were similar to the vehicle control group during gestation days 0-3, 3-6, 6-9, and/or 9-12. However, significantly (p<0.01) lower mean body weight gains were noted in the 25 and 50 mg/kg/day groups throughout the remainder of the treatment period (gestation days 12-20). As a result, significantly (p<0.01) lower mean body weight gains were noted at 25 and 50 mg/kg/day when the entire treatment period (gestation days 0-20) was evaluated. Mean body weights in the 25 and 50 mg/kg/day groups were significantly (p<0.01) lower (up to 10.6% and 22.3%, respectively) than the vehicle control group during gestation days 18-20 and 12-20, respectively. At necropsy, a lower mean net body

weight in the 50 mg/kg/day group and lower mean net body weight changes in the 25 and 50 mg/kg/day groups were also noted; the differences were significant (p<0.01). Mean net body weight in the 25 mg/kg/day group was similar to the vehicle control group. Additionally, gravid uterine weights in the 25 and 50 mg/kg/day groups were significantly (p<0.01) lower than the vehicle control group and were attributed to the decreased number of viable fetuses and lower mean fetal weights noted at these exposure levels (see Section 6.6.3.). The decreased number of viable fetuses and lower fetal weights in the 25 and 50 mg/kg/day groups also contributed to the lower body weights and body weight losses/reduced body weight gains in these groups, especially during the latter part of gestation (see Section 6.6.3.).

Mean maternal body weights, body weight gains, net body weight, net body weight gain, and gravid uterine weight in the 5 mg/kg/day group were unaffected by test substance administration. Differences from the vehicle control group were slight and not statistically significant.

Mean maternal body weights, body weight gains, net body weight, net body weight gain, and gravid uterine weight in the vehicle control group were similar to the sham control group. Differences from the sham control group were slight and attributed to biological variability.

6.5. MATERNAL FOOD CONSUMPTION

Summary Data: Table S8, Table S9 Individual Data: Table A8, Table A9

Test substance-related, lower mean food consumption, evaluated as g/animal/day and g/kg/day, was noted in the 25 and 50 mg/kg/day groups generally throughout the treatment period and when the entire treatment period (gestation days 0-20) was evaluated; differences from the vehicle control group were generally significant (p<0.05 or p<0.01). The lower mean food consumption in these groups corresponded to the mean body weight losses and lower mean body weight gains noted during the treatment period.

Maternal food consumption in the 5 mg/kg/day group was generally similar to the vehicle control group throughout the treatment period, with the following exception. A significantly (p<0.05) lower mean food consumption value (g/kg/day only) was noted in the 5 mg/kg/day group when the overall treatment period (gestation days 0-20) was evaluated. However, no corresponding effects on g/animal/day food consumption, mean body weights, or mean body weight gains were noted in this group; therefore, the difference in mean food consumption at 5 mg/kg/day was attributed to biological variability and was not considered test substance-related.

Mean food consumption in the vehicle control group was generally similar to the sham control group, with the following exception. A transient, significantly (p<0.05) higher g/kg/day mean food consumption value was noted in the vehicle control group during gestation days 6-9 compared to the sham control group. Because there was no effect on the overall treatment interval or corresponding effect on mean body weight in the vehicle control group, this change was attributed to biological variability.

6.6. ANATOMIC PATHOLOGY AND LAPAROHYSTERECTOMY

6.6.1. Macroscopic Examinations

Summary Data: Table S10

Individual Data: Table A10

Test substance-related mortality was observed at 50 mg/kg/day. In the 50 mg/kg/day group, female nos. 26452 and 26314 were found dead on gestation days 18 and 19, respectively. Female no. 26452 was noted internally with a pale liver, brain, and pituitary gland and had 4 late resorptions and 10 early resorptions *in utero*. Female no. 26314 was noted internally with dark red contents in the vagina and had 2 late resorptions and 14 early resorptions *in utero*. Both females that were found dead were noted with red matting on the skin on the urogenital and nasal areas; this finding correlated with red material clinical findings around the urogenital area and nose noted for these females. All other females in the 50 mg/kg/day group survived to the scheduled necropsy.

In the 50 mg/kg/day group, 1 female (no. 26356) was noted with dark red contents in the uterus; because similar findings were noted in the females that were found dead in the

50 mg/kg/day group, this finding was considered test substance-related. No test

substance-related internal findings were observed at the scheduled necropsy at 5 and

25 mg/kg/day. Macroscopic findings observed in the test substance-treated groups

occurred infrequently and/or in a manner that was not dose-related. With the exception

of 1 female in the 50 mg/kg/day group, all females in the test substance-treated groups

were determined to be gravid.

No macroscopic findings were noted for females in the vehicle control or sham control

groups at the scheduled necropsy. One female each in the vehicle control and sham

control groups were determined to be nongravid.

6.6.2. ORGAN WEIGHTS

Summary Data: Table S11

Individual Data: Table A11, Table A12

Test substance-related, significantly (p<0.05 or p<0.01) lower mean thymus weights

(absolute and relative to brain) were noted in the 25 and 50 mg/kg/day groups compared

to the vehicle control group. Mean liver (absolute and relative to brain) weights and

absolute brain weights in the 25 and 50 mg/kg/day groups were similar to the vehicle

control group.

No test substance-related effects on organ weights (absolute and relative to brain weight)

were observed at 5 mg/kg/day. None of the differences from the vehicle control group

were statistically significant.

Mean organ weights (absolute and relative to brain) in the vehicle control group were

similar to the sham control group. Differences from the sham control group were slight

and not statistically significant.

6.6.3. GESTATION DAY 20 LAPAROHYSTERECTOMY DATA

Summary Data: Table S12, Table S13

Individual Data: Table A13, Table A14, Table A15

Historical Control Data: Appendix G

Test substance-related effects on intrauterine growth and survival were noted at 25 and 50 mg/kg/day. The mean litter proportions of postimplantation loss in the 25 and 50 mg/kg/day groups (42.8% and 82.8% per litter, respectively) were significantly (p<0.01) higher than the vehicle control group (6.5% per litter) and exceeded the maximum mean value in the WIL historical control data (9.9% per litter). This increase in postimplantation loss was the result of an increased mean litter proportion of early resorptions at 25 and 50 mg/kg/day. Corresponding significantly (p<0.01) lower mean litter proportions of viable fetuses were noted in the 25 and 50 mg/kg/day groups (57.2% and 17.2% per litter, respectively) when compared to the vehicle control group (93.5% per litter) and the values were below the minimum mean value in the WIL historical control data (90.1% per litter). The mean numbers of viable fetuses at 25 and 50 mg/kg/day (8.5 and 2.7 per litter, respectively) were also significantly (p<0.01) lower than the vehicle control group (13.4 per litter) and below the minimum mean value in the WIL historical control data (12.2 per litter). One and 8 females in the 25 and 50 mg/kg/day groups, respectively, had 100% post-implantation loss (0.0% viable fetuses). Additionally, in the 25 and 50 mg/kg/day groups, significantly (p<0.01) lower mean male (3.4 g and 2.7 g, respectively), female (3.1 g and 2.6 g, respectively), and combined (3.2 g and 2.7 g, respectively) fetal weights were noted compared to the vehicle control group values (3.8 g, 3.6 g, and 3.7 g, respectively). The fetal weight values in the 25 and 50 mg/kg/day groups were also below the minimum mean values in the WIL historical control data (3.5 g, males, 3.4 g, females, and 3.4 g, combined). Intrauterine growth and survival were unaffected by test substance administration at an exposure level of 5 mg/kg/day. The mean number of corpora lutea and implantation sites at 5, 25, and 50 mg/kg/day were similar to the vehicle control group.

Intrauterine growth and survival parameters in the vehicle control group were similar to the sham control group. Differences from the sham control group were slight and not statistically significant.

6.7. FETAL MORPHOLOGICAL DATA

Summary Data: Table S14, Table S15, Table S16, Table S17

Individual Data: Table A16

Historical Control Data: Appendix G

The numbers of fetuses (litters) available for morphological evaluation were 346(24), 322(24), 340(25), 213(24), and 59(14) in the sham control, vehicle control, 5, 25, and 50 mg/kg/day groups, respectively. Malformations were observed in 4(2), 0(0), 3(2), 0(0), and 1(1) fetuses (litters) in these same respective dose groups.

6.7.1. EXTERNAL MALFORMATIONS AND VARIATIONS

There were no test substance-related external malformations noted for fetuses in the test substance-treated groups. Fetus no. 26370-11 in the 5 mg/kg/day group was noted with micropthalmia (right); skeletally, this finding consisted of the orbit being smaller than normal. Because this finding occurred in a single fetus and did not occur in a dose-related manner, it was not considered test substance-related.

No significant differences in external malformations were noted when the vehicle control group was compared to the sham control group. In the sham control group, 1 fetus (no. 26433-06) was noted with localized fetal edema (neck and thorax).

There were no external developmental variations noted for fetuses in this study.

6.7.2. VISCERAL MALFORMATIONS AND VARIATIONS

There were no test substance-related visceral malformations noted for fetuses in the test substance-treated groups. Fetus no. 26354-01 in the 5 mg/kg/day group was noted with situs inversus (trachea, esophagus, heart, great and major vessels, lungs, liver, stomach, pancreas, spleen, kidneys, adrenals, and intestine laterally transposed). Because this

finding occurred in a single animal, did not occur in a dose-related manner, and was also noted for 1 fetus (no. 26407-01) in the sham control group, it was not considered test substance-related.

No test substance-related visceral developmental variations were noted in the 5, 25, and 50 mg/kg/day groups. One fetus (no. 26390-03) in the 25 mg/kg/day group was noted with a major blood vessel variation (right carotid and right subclavian arteries arose independently from the aortic arch [no brachiocephalic trunk]). In the 5 mg/kg/day group, fetus no. 26402-09 was noted with a distended ureter (left). These findings occurred in single animals and did not occur in a dose-related manner; therefore, these findings were not considered test substance-related. Fetus no. 26315-06 in the vehicle control group was noted with a hemorrhagic ring around the iris (right).

No significant differences in visceral malformations or developmental variations were noted when the vehicle control group was compared to the sham control group. Fetus no. 26302-10 in the sham control group was noted with the variation of a distended ureter (left).

One fetus each in the sham control and 5 mg/kg/day groups (nos. 26426-07 and 26402-09, respectively) were noted with renal papilla(e) not fully developed (Woo and Hoar Grade 1). This finding was not classified as either a malformation or developmental variation, was not included on the summary tables, and was not considered to be test substance-related because it occurred infrequently and in a manner that was not dose-related.

6.7.3. SKELETAL MALFORMATIONS AND VARIATIONS

There were no test substance-related skeletal malformations noted for fetuses in the test substance-treated groups. Two (nos. 26354-01 and 26354-02) and 1 (no. 26393-14) fetuses in the 5 and 50 mg/kg/day groups, respectively, were noted with a vertebral anomaly without an associated rib anomaly (absent, fused, smaller or larger than normal,

and/or malpositioned centra and arches). This malformation did not occur in a dose-related manner, and therefore was not considered test substance-related.

In the 50 mg/kg/day group, a decreased mean litter proportion of cervical centrum no. 1 ossified and increased mean litter proportions of sternebra(e) nos. 5 and/or 6 unossified, reduced ossification of the vertebral arches, reduced ossification of the skull, and pubis unossified were noted compared to the vehicle control group; the difference in sternebra(e) nos. 5 and/or 6 unossified was significant (p<0.05). The mean litter proportion of reduced ossification of the skull was also higher in the 25 mg/kg/day group compared to the vehicle control group. While these findings were test substance-related, they were considered secondary to the reduced fetal weights noted at 25 and 50 mg/kg/day. No test substance-related skeletal developmental variations were noted at 5 mg/kg/day. The following text table summarizes the absolute number of fetuses and mean litter proportions of the test substance-related skeletal developmental variations observed in this study.

Text Table 2. Skeletal Developmental Variations

Dose (mg/kg):	O a	5	25	50	WIL HC Mean (Range; % per litter)
Skeletal Developmental Variations:					_
Absolute no. (% per litter)					
Sternebra(e) nos. 5 and/or 6 unossified	48 (14.6)	40 (11.8)	35 (14.7)	26 (50.2*)	6.4 (0.0-26.1)
Cervical centrum no. 1 ossified	33 (9.8)	63 (18.5)	15 (11.3)	7 (5.3)	20.4 (6.6-35.8)
Reduced ossification of the vertebral					
arches	2 (0.5)	1 (0.3)	3 (1.1)	10 (26.8)	0.1 (0.0-1.1)
Reduced ossification of the skull	1 (0.2)	2 (0.6)	5 (1.8)	7 (14.3)	0.1 (0.0-1.0)
Pubis unossified	1 (0.3)	0(0.0)	0 (0.0)	2 (7.1)	0.1 (0.0-2.3)

a Vehicle control.

WIL HC = WIL developmental historical control data.

Other skeletal developmental variations observed in the test substance-treated groups consisted of 7th cervical rib(s), 14th rudimentary rib(s), sternebra(e) malaligned (slight or

^{* =} Significantly different from the vehicle control group at 0.05 using Dunnett's test.

moderate), sternebra(e) nos. 1, 2, 3, and/or 4 unossified, reduced ossification of the 13th rib(s), 25 presacral vertebrae, and 27 presacral vertebrae. These findings occurred infrequently or at a frequency similar to the vehicle control group, did not occur in a dose-related manner, and/or the mean litter proportions were within the WIL historical control data range.

No significant differences in skeletal malformations or developmental variations were noted when the vehicle control group was compared to the sham control group. In the sham control group, 2 fetuses from a single litter (nos. 26433-06 and 26433-14) were noted with sternoschisis (sternal bands nos. 1 and 2 or nos. 5 and 6 not joined). In addition, 1 fetus (no. 26407-16) in the sham control group was noted with severely malaligned sternebrae.

6.7.4. <u>Summary of External, Visceral, and Skeletal</u> Examinations

The numbers of fetuses (litters) available for morphological evaluation were 346(24), 322(24), 340(25), 213(24), and 59(14) in the sham control, vehicle control, 5, 25, and 50 mg/kg/day groups, respectively. Malformations were observed in 4(2), 0(0), 3(2), 0(0), and 1(1) fetuses (litters) in these same respective dose groups.

A significantly (p<0.01) higher incidence of fetal developmental variations was observed in the 50 mg/kg/day group (82.9% per litter) compared to the vehicle control group (33.0% per litter). This was due to the significantly (p<0.01) higher percent per litter of skeletal variations (82.9% per litter versus 32.6% per litter in the vehicle control group). Increased mean litter proportions of sternebra(e) nos. 5 and/or 6 unossified, reduced ossification of the vertebral arches, reduced ossification of the skull, and pubis unossified were noted in the 50 mg/kg/day group. In addition, a decreased mean litter proportion of cervical centrum no. 1 ossified was noted at 50 mg/kg/day. An increased mean litter proportion of reduced ossification of the skull was also noted in the 25 mg/kg/day group. These findings were considered secondary to the reduced fetal weights noted in the

25 and 50 mg/kg/day groups. No test substance-related fetal malformations or developmental variations were noted in the 5 mg/kg/day group.

No significant differences in fetal malformations or developmental variations were noted when the vehicle control group was compared to the sham control group.

7. Conclusions

Maternal toxicity was evidenced by mortality at 50 mg/kg/day and lower mean food consumption with corresponding mean body weight losses and lower mean body weight gains generally throughout the treatment period in the 25 and 50 mg/kg/day groups. Additionally, lower mean thymus weights were noted in the 25 and 50 mg/kg/day groups. No evidence of maternal toxicity was noted at 5 mg/kg/day. Developmental effects were noted in the 25 and 50 mg/kg/day groups as evidenced by increased mean litter proportions of postimplantation loss (early resorptions at 25 mg/kg/day and early and late resorptions at 50 mg/kg/day) with a corresponding decrease in the mean numbers and litter proportions of viable fetuses. In addition, lower mean male, female, and combined fetal weights were noted in the 25 and 50 mg/kg/day groups. Test substance-related fetal developmental variations (sternebra[e] nos. 5 and/or 6 unossified, cervical centrum no. 1 ossified, reduced ossification of the vertebral arches, reduced ossification of the skull, and/or pubis unossified) were noted in the 50 mg/kg/day group and reduced ossification of the skull was also noted in the 25 mg/kg/day group. These findings were considered secondary to the lower fetal weights noted in these groups. Intrauterine growth and survival and external, visceral, and skeletal fetal morphology were unaffected by test substance administration at an exposure level of 5 mg/kg/day.

Based on these results, an exposure level of 5 mg/kg/day was considered to be the no-observed-adverse-effect level (NOAEL) for maternal toxicity and embryo/fetal development when clarified oils, catalytic cracked was administered by dermal application to bred Crl:CD(SD) rats.

8. REPORT REVIEW AND APPROVAL

Report Authored and Approved By:	
Jeffrey H. Charlap, MS Staff Toxicologist, Developmental and Reproductive Toxicology Study Director	12 July 2012 Date
Report Prepared By: Sara L. DeLillo, MS Study Analyst	12 Jul 2012 Date
Report Reviewed By:	
Jaime L. Bard, MS Group Supervisor, Reporting & Technical Support Services	11 Jul 2012 Date
Tammye L. Edwards, BS Senior Toxicologist, Developmental	12 - ju 701- Date
and Reproductive Toxicology Donald G. Stump, PhD, DABT Senior Director, Developmental and Reproductive Toxicology	12 Jul 2012 Date
reproductive roxicology	

9. QUALITY ASSURANCE STATEMENT

Date(s) of Inspection(s)	Phase Inspected	Date(s) Findings Reported to Study Director	Date(s) Findings Reported to Management
30-Aug-2011	Protocol Review	30-Aug-2011	26-Sep-2011
09-Sep-2011	Protocol Amendment 1	09-Sep-2011	25-Oct-2011
09-Sep-2011	Protocol Amendment 2	09-Sep-2011	25-Oct-2011
28-Sep-2011, 29-Sep-2011	Dermal Observations	29-Sep-2011	25-Oct-2011
03-Oct-2011	Laparohysterectomy and Fetal Examinations	03-Oct-2011	28-Nov-2011
20-Oct-2011, 21-Oct-2011, 24-Oct-2011, 25-Oct-2011, 06-Dec-2011, 07-Dec-2011, 09-Dec-2011	Study Records (I-1)	09-Dec-2011	16-Jan-2012
26-Oct-2011, 27-Oct-2011, 08-Dec-2011, 09-Dec-2011	Study Records (I-2)	09-Dec-2011	16-Jan-2012
27-Oct-2011	Protocol Amendment 3	27-Oct-2011	28-Nov-2011
28-Oct-2011, 08-Dec-2011, 09-Dec-2011	Study Records (N-1)	09-Dec-2011	16-Jan-2012
03-Nov-2011	Protocol Amendment 4	03-Nov-2011	20-Dec-2011
07-Nov-2011, 08-Nov-2011, 08-Dec-2011, 09-Dec-2011	Study Records (Rx-1)	09-Dec-2011	16-Jan-2012
09-Nov-2011	Protocol Amendment 5	09-Nov-2011	20-Dec-2011

WIL-402016 American Petroleum Institute

Clarified Oils, Catalytic Cracked

Date(s) of Inspection(s)	Phase Inspected	Date(s) Findings Reported to Study Director	Date(s) Findings Reported to Management
18-Nov-2011, 08-Dec-2011, 09-Dec-2011	Study Records (N-2)	09-Dec-2011	16-Jan-2012
23-Nov-2011, 28-Nov-2011	Study Records (A-1)	28-Nov-2011	20-Dec-2011
01-Dec-2011, 02-Dec-2011, 05-Dec-2011, 06-Dec-2011, 09-Dec-2011	Draft Report (without Analyses of Dosing Formulations Appendix)		
		09-Dec-2011	16-Jan-2012
05-Dec-2011	Analytical Chemistry Report	05-Dec-2011	16-Jan-2012
15-Dec-2011, 16-Dec-2011	Audited Draft Report	16-Dec-2011	16-Jan-2012
16-Dec-2011	Audited Analytical Chemistry Report	16-Dec-2011	16-Jan-2012
10-Jul-2012	Final Report	10-Jul-2012	10-Jul-2012

This study was inspected in accordance with the United States EPA GLP Standards (40 CFR Part 792), the OECD Principles of GLP [C(97) 186/Final], WIL Research's SOPs, and the Sponsor's protocol and protocol amendments, with the following exception. The data located in Appendix B (Test Substance Characterization) were the responsibility of the Sponsor. A yearly internal facility inspection is conducted by the WIL Research Quality Assurance Department.

This report accurately reflects the data generated during the study. The methods and procedures used in the study were those specified in the protocol, its amendments, and WIL Research's SOPs.

R. Kelvin Mentzer, BS, RQAP-GLP Quality Assurance Representative 12 Jul 2012

Date

10. REFERENCES

Dawson, A.B. A note on the staining of the skeleton of cleared specimens with Alizarin Red S. *Stain Technology* **1926**, *1*, 123-124.

Draize, J.H. The appraisal of the safety of chemicals in foods, drugs, and cosmetics. *Dermal Toxicity* **1965**, 46-59.

Dunn, O.J. Multiple comparisons using rank sums. *Technometrics* **1964**, *6*(3), 241-252.

Dunnett, C.W. New tables for multiple comparisons with a control. *Biometrics* **1964**, *20*, 482-491.

Freireich, E.J. Gehan, E.A.; Rall, D.P.; Schmidt, L.H.; Skipper, H.E. Quantitative Comparison Toxicity of Anticancer Agents in Mouse, Rat, Hamster, Dog Monkey, and Man. *Cancer Chemotherapy Reports* **1966**, *50*(4), 219-244.

Haubenstricker, M.E. Analytical Validation and Stability Study of Catalytically Cracked Slurry Oil in Acetone Formulations (Study No. WIL-402029). WIL Research Laboratories, LLC, Ashland, OH, **2011.**

Inouye, M. Differential staining of cartilage and bone in fetal mouse-skeleton by Alcian blue and Alizarin red S. *Congenital Anomalies* **1976**, *16*, 171-173.

Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. *Journal of the American Statistical Association* **1952**, *47*, 583-621.

National Research Council. *Guide for the Care and Use of Laboratory Animals*, Institute of Laboratory Animal Resources, Commission on Life Sciences; National Academy Press: Washington, DC, **1996**.

Salewski, E. Färbemethode zum makroskopischen Nachweis von Implantationsstellen am Uterus der Ratte. [Staining method for a macroscopic test for implantation sites in the uterus of the rat]. *Naunyn - Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie* **1964**, *247*, 367.

Snedecor, G.W.; Cochran, W.G. One-Way Classifications; Analysis of Variance. In *Statistical Methods*, 7th ed.; The Iowa State University Press: Ames, IA, **1980**; pp 215-237.

Stuckhardt, J.L.; Poppe, S.M. Fresh visceral examination of rat and rabbit fetuses used in teratogenicity testing. *Teratogenesis, Carcinogenesis and Mutagenesis* **1984**, *4*, 181-188.

Wilson, J.G. Embryological Considerations in Teratology. In *Teratology: Principles and Techniques;* Wilson, J.G. and Warkany, J., Eds.; The University of Chicago Press: Chicago, IL, **1965**; pp 251-277.

Woo, D.C.; Hoar, R.M. Apparent hydronephrosis as a normal aspect of renal development in late gestation of rats: the effect of methyl salicylate. *Teratology* **1972**, *6*, 191-196.

11. DATA RETENTION

The Sponsor has title to all documentation records, raw data, specimens, or other work product generated during the performance of the study. Any remaining dosing formulation samples were discarded upon issuance of the final report. All remaining work product generated by WIL Research, including raw paper data and specimens, are retained in the WIL Research Archives as specified in the study protocol.

Reserve samples of the test substance, pertinent electronic storage media, and the original final report are retained in the WIL Research Archives in compliance with regulatory requirements.

12. ABBREVIATIONS

The following abbreviations may apply to this report:

μ - micro

AAALAC - Association for Assessment and Accreditation of Laboratory

Animal Care

ANOVA - analysis of variance

cm - centimeter dL - deciliter

EPA - Environmental Protection Agency

exp. - expiration

g - gram

GC - gas chromatography

GLP - Good Laboratory Practices

GMP - Good Manufacturing Practices

hr - hour(s)

kg - kilogram

L - liter

M - molar

mg - milligram

mL - milliliter

mm - millimeter

ms - milliseconds

mM - millimolar

NA - not applicable

NF - National Formulary

no. - number

OECD - Organisation for Economic Cooperation and Development

OPPTS - Office of Prevention, Pesticides, and Toxic Substances

PAC - polycyclic aromatic compounds

ppm - parts per million

SOP - standard operating procedure

TSCA - Toxic Substances Control Act

WIL Research - WIL Research Laboratories, LLC

WTDMSTM - WIL Toxicology Data Management System

wt. - weight

wts. - weights

TABLES S1 - S17

TABLE S1
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 1 SUMMARY OF MATERNAL SURVIVAL AND PREGNANCY STATUS SPONSOR: AMERICAN PETROLEUM

DOSE GROUP :	1		2	2	3			4		5
	NO.	%	NO.	%	NO.	%	NO.	%	NO.	%
FEMALES ON STUDY	25		25		25		25		25	
FEMALES THAT ABORTED										
OR DELIVERED	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
FEMALES THAT DIED	0	0.0	0	0.0	0	0.0	0	0.0	2	8.0
FEMALES THAT ABORTED	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
NONGRAVID	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
GRAVID	0	0.0	0	0.0	0	0.0	0	0.0	2	100.0
FEMALES THAT WERE EUTHANIZED	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
NONGRAVID	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
GRAVID	0	0.0	0	0.0	0	0.0	0	0.0	0	0.0
FEMALES EXAMINED AT										
SCHEDULED NECROPSY	25 1	00.0	25	L00.0	25 1	.00.0	25	100.0	23	92.0
NONGRAVID		4.0		4.0		0.0		0.0		4.3
GRAVID		96.0		96.0		.00.0		100.0	22	95.7
WITH RESORPTIONS ONLY		0.0	0	0.0		0.0	1	4.0	8	36.4
WITH VIABLE FETUSES	24 1			100.0		.00.0		96.0		63.6
TOTAL FEMALES GRAVID	24	96.0	24	96.0	25 1	.00.0	25	100.0	24	96.0
1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VE	H. 3- 5	MG/KG/DAY	4- 2	25 MG/KG/DAY	 5-	50 MG/KG/	DAY			

PSPSv4.01 10/27/2011

Page 55 of 394

TABLE S2 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM SUMMARY OF CLINICAL FINDINGS: TOTAL OCCURRENCE/NO. OF ANIMALS ---- F E M A L E -----

PAGE 1

	F E M	А L E			
TABLE RANGE:		09-13-11 TO 10-08	-11		
GROUP:	1	2	3	4	5
NORMAL					
-NO SIGNIFICANT CLINICAL OBSERVATIONS	106/25	104/25	102/25	68/25	52/25
DISPOSITION					
-SCHEDULED EUTHANASIA; GESTATION DAY 20	25/25	25/25	25/25	25/25	23/23
-FOUND DEAD	0/ 0	0/ 0	0/ 0	0/ 0	2/ 2
BODY/INTEGUMENT					
-WET YELLOW MATERIAL UROGENITAL AREA	0/ 0	17/ 5	17/ 7	27/12	21/ 9
-WET YELLOW MATERIAL VENTRAL ABDOMINAL	0/ 0	0/ 0	4/ 1	1/ 1	0/ 0
AREA					
-HAIR LOSS LEFT HINDLIMB	0/ 0	0/ 0	5/ 1	0/ 0	0/ 0
-HAIR LOSS RIGHT FORELIMB	3/1	0/ 0	4/ 3	3/3	2/ 2
-HAIR LOSS LEFT FORELIMB	4/ 1	0/ 0	3/ 1	2/ 1	0/ 0
-DRIED YELLOW MATERIAL UROGENITAL AREA	9/4	8/3	20/6	38/13	35/11
-HAIR LOSS VENTRAL ABDOMINAL AREA	0/ 0	4/ 1	9/ 1	3/ 1	0/ 0
-LACERATION LEFT LATERAL ABDOMINAL AREA	0/ 0	0/ 0	0/ 0	0/ 0	1/ 1
-WET RED MATERIAL UROGENITAL AREA	0/0	0/ 0	2/ 2	10/ 9	20/15
-DRIED RED MATERIAL UROGENITAL AREA	3/3	2/ 2	15/ 8	38/16	61/22
-HAIR LOSS DORSAL HEAD	1/ 1	1/ 1	2/ 1	1/ 1	0/0
-HAIR LOSS FACIAL AREA	0/ 0	2/ 1	1/ 1	0/ 0	0/ 0
-BODY PALE	0/ 0	0/ 0	0/ 0	0/ 0	5/ 4

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE S2 (DAILY EXAMINATIONS)

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM SUMMARY OF CLINICAL FINDINGS: TOTAL OCCURRENCE/NO. OF ANIMALS

F E M A L E									
TABLE RANGE:		09-13-11 TO 10-08	-11						
GROUP:	1	2	3	4					
EYES/EARS/NOSE									
-DRIED RED MATERIAL AROUND NOSE	389/25	383/25	378/25	417/25	432/25				
-DRIED RED MATERIAL RIGHT EYE	168/23	172/23	177/23	164/22	208/25				
-DRIED RED MATERIAL LEFT EYE	143/21	167/23	163/23	158/23	186/24				
-WET RED MATERIAL AROUND NOSE	2/ 2	1/ 1	1/ 1	2/ 2	0/ (
-WET RED MATERIAL RIGHT EYE	0/ 0	2/ 1	2/ 1	2/ 1	0/ (
-WET RED MATERIAL LEFT EYE	0/ 0	2/ 1	1/ 1	2/ 1	0/ (
-HAIR LOSS AROUND RIGHT EYE	2/ 2	4/3	2/2	4/2	0/ (
-HAIR LOSS AROUND LEFT EYE	0/ 0	4/ 3	1/ 1	4/ 2	0/ 0				
EXCRETA -DECREASED DEFECATION	88/21	87/22	104/25	99/24	162/25				
-MET RED VAGINAL DISCHARGE	0/0	0/0	1/ 1	0/ 0	0/ (
	07 0	0, 0	1/ 1	0, 0	0,				
ORAL/DENTAL -LEFT UPPER INCISOR MISSING	1/ 1	0/ 0	0/ 0	0/ 0	0/ (
-RIGHT UPPER INCISOR BROKEN	1/ 1	0/ 0	0/ 0	0/ 0	0/ 0				
SPECIAL II									
-ANIMAL FOUND WITHOUT COLLAR ON	6/ 6	8/ 5	6/ 4	4/ 4	6/ 6				

PCSUv4.07 12/16/2011

PAGE 2

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR: AMERICAN PETROLEUM SUMMARY OF POST-DOSE FINDINGS: TOTAL OCCURRENCE/NO. OF ANIMALS
----- FEMALE-----

	TABLE RANGE: GROUP:	09-13-11 TO	10-07-11	3	4	5	
NORMAL							
TIME OF DOSE -NO SIGNIFICANT CLINICAL (OBSERVATIONS	500/25	500/25	499/25	500/25	497/25	
1-2 HOURS POST-DOSING -NO SIGNIFICANT CLINICAL (OBSERVATIONS	499/25	494/25	484/25	472/25	463/25	
BODY/INTEGUMENT							
1-2 HOURS POST-DOSING -WET YELLOW MATERIAL UROGE -DRIED YELLOW MATERIAL UROGENITH -WET RED MATERIAL UROGENITH -DRIED RED MATERIAL UROGENITH -WET CLEAR MATERIAL UROGENITH	OGENITAL AREA FAL AREA NITAL AREA	0/0 1/1 0/0 0/0 0/0	5/5 0/0 1/1 0/0 0/0	12/8 1/1 0/0 2/1 1/1	17/13 1/1 4/4 6/5 0/0	13/10 0/0 10/8 8/7 0/0	
EXCRETA							
1-2 HOURS POST-DOSING -WET RED VAGINAL DISCHARGE	E	0/0	0/0	0/0	0/0	3/3	
1-0 MG/KG/DAY SHAM 2-0 MG/K	KG/DAY VEH. 3	- 5 MG/KG/DA	Y 4- 25	MG/KG/DAY 5	- 50 MG/KG/DA	 У	DDD#### 4 40

PPDTSUv1.48 12/16/2011

PAGE 1

Page 58 of 394

TABLE S4 (DERMAL OBSERVATIONS)
RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO :WIL-402016

PROJECT NO.:WIL-402016 SPONSOR:AMERICAN PETROLEUM	RAT DERMAL DEV TOX STU SUMMARY OF CLINICAL FI	DY OF CLAR	•			PAGE	1
	-	F E M	A L E				
	TABLE RANGE:		09-13-11 TO 10-08	3-11			
	GROUP:	1	2 	3	4		5
DERMAL OBS							
-SCORED, NOT REMARKABLE	5	19/25	502/25	502/25	511/25	5	515/25
-NO ERYTHEMA		6/2	23/ 8	23/12	14/ 5		5/3
-NO EDEMA		6/2	23/ 8	23/12	14/ 5		5/3
-DESQUAMATION		6/ 2	23/ 8	23/12	14/ 5		5/3
1-0 MG/KG/DAY SHAM 2-0 MG/	KG/DAY VEH. 3- 5 MG/KG/D.	AY 4-	25 MG/KG/DAY 5	 - 50 MG/KG/DAY			
, , , , , , , , , , , , , , , , , , , ,	,			,		PCSUv 11/11	74.07 L/2011

TABLE S5
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 1

SUMMARY OF BODY WEIGHTS DURING GESTATION [G]

	GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
DAY	0					
	MEAN	N 253.	251.	251.	253.	252.
	S.D.	. 11.7	11.3	11.9	12.2	12.3
	S.E.	. 2.4	2.3	2.4	2.4	2.5
	N	24	24	25	25	24
DAY	3					
DAI	MEAN	J 251.	249.	251.	249.	243.
	S.D.		17.6	13.1	12.6	10.9
	S.E.		3.6	2.6	2.5	2.2
	N N	24	24	25	25	24
	23	21	21	23	20	21
DAY	6					
	MEAN	J 264.	261.	262.	261.	255.
	S.D.		15.6	15.6	12.2	14.8
	S.E.		3.2	3.1	2.4	3.0
	N	24	24	25	25	24
DAY	9					
	MEAN	J 278.	274.	273.	271.	264.
	S.D.	. 14.2	15.7	15.3	13.2	14.8
	S.E.	. 2.9	3.2	3.1	2.6	3.0
	N	24	24	25	25	24
DAY	12					
DAI	MEAN	J 293.	291.	287.	286.	277.d
	S.D.		16.2	16.1	13.7	18.4
	S.E.		3.3	3.2	2.7	3.8
	N	24	24	25	25	24
		2.1		23	23	

MODIFIED STATISTICS USED.

SPONSOR: AMERICAN PETROLEUM

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunnett's test

NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PROJECT NO.:WIL-402016 SPONSOR:AMERICAN PETROLEUM

TABLE S5 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SUMMARY OF BODY WEIGHTS DURING GESTATION [G]

		GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
DAY	15						
		MEAN	310.	308.	305.	296.	282.d
		S.D.	14.3	18.2	18.0	13.6	20.9
		S.E.	2.9	3.7	3.6	2.7	4.3
		N	24	24	25	25	24
DAY	18						
		MEAN	349.	343.	344.	319.d	285.d
		S.D.	17.1	23.3	19.3	20.2	26.4
		S.E.	3.5	4.8	3.9	4.0	5.5
		N	24	24	25	25	23
DAY	20						
		MEAN	385.	377.	374.	337.d	293.d
		S.D.	18.1	28.7	21.9	25.8	34.8
		S.E.	3.7	5.9	4.4	5.2	7.4
		N	24	24	25	25	22

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunnett's test

NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PGBWSUv5.10 11/11/2011

PAGE 2

TABLE S6
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 1

SUMMARY OF BODY WEIGHT CHANGES DURING GESTATION [G]

		GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
DAY	0 -	3 MEAN	-2.	-2.	-1.	-5.	-9.d
		S.D.	8.9	10.6	6.1	7.4	6.9
		S.E.	1.8	2.2	1.2	1.5	1.4
		N	24	24	25	25	24
DAY	3 -	6					
		MEAN	12.	12.	11.	12.	12.
		S.D.	4.7	6.4	5.6	5.8	8.7
		S.E.	1.0	1.3	1.1	1.2	1.8
		N	24	24	25	25	24
DAY	6-	9					
		MEAN	15.	13.	12.	10.	9.
		S.D.	4.8	6.4	6.5	6.1	5.7
		S.E.	1.0	1.3	1.3	1.2	1.2
		N	24	24	25	25	24
DAY	9-	12					
		MEAN	15.	17.	14.	14.	13.
		S.D.	6.1	6.1	5.4	5.2	7.3
		S.E.	1.2	1.3	1.1	1.0	1.5
		N	24	24	25	25	24
DAY	12-	15					
		MEAN	17.	17.	18.	11.d	5.d
		S.D.	4.7	5.5	6.5	5.9	6.9
		S.E.	1.0	1.1	1.3	1.2	1.4
		N	24	24	25	25	24

MODIFIED STATISTICS USED.

SPONSOR: AMERICAN PETROLEUM

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunnett's test
MEAN DIFFERENCES CALCULATED FROM INDIVIDUAL DIFFERENCES
NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PROJECT NO.:WIL-402016 SPONSOR:AMERICAN PETROLEUM

TABLE S6 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SUMMARY OF BODY WEIGHT CHANGES DURING GESTATION [G]

		GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
DAY	15-	18					
		MEAN	39.	36.	39.	23.d	3.d
		S.D.	7.4	7.6	6.2	11.1	14.6
		S.E.	1.5	1.5	1.2	2.2	3.0
		N	24	24	25	25	23
DAY	18-	20					
		MEAN	36.	34.	30.	19.d	7.d
		S.D.	6.3	8.6	5.1	10.6	13.1
		S.E.	1.3	1.8	1.0	2.1	2.8
		N	24	24	25	25	22
DAY	0 -	20					
		MEAN	132.	127.	123.	84.d	40.d
		S.D.	12.8	21.6	17.0	24.7	26.8
		S.E.	2.6	4.4	3.4	4.9	5.7
		N	24	24	25	25	22

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunnett's test

MEAN DIFFERENCES CALCULATED FROM INDIVIDUAL DIFFERENCES

MEAN DIFFERENCES CALCULATED FROM INDIVIDUAL DIFFERENCES NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PGBWSUv5.10 11/11/2011

PAGE 2

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX SPONSOR:AMERICAN PETROLEUM SUMMARY OF GRAVII

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SUMMARY OF GRAVID UTERINE WTS. AND NET BODY WT. CHANGES [G]

TABLE S7

GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
INITIAL BODY WT.					
MEAN	253.	251.	251.	253.	253.
S.D.	11.7	11.3	11.9	12.2	12.4
S.E.	2.4	2.3	2.4	2.4	2.6
N	24	24	25	25	22
TERMINAL BODY WT.					
MEAN	385.	377.	374.	337.d	293.d
S.D.	18.1	28.7	21.9	25.8	34.8
S.E.	3.7	5.9	4.4	5.2	7.4
N	24	24	25	25	22
GRAVID UTERINE WT.					
MEAN	84.0	76.8	76.1	46.7d	17.9d
S.D.	9.05	17.26	8.64	22.37	14.47
S.E.	1.85	3.52	1.76	4.47	3.09
N	24	24	24	25	22
NET BODY WT.					
MEAN	300.9	300.6	297.2	290.7	275.3d
S.D.	16.68	16.50	17.67	14.47	25.21
S.E.	3.41	3.37	3.61	2.89	5.38
N	24	24	24	25	22
NET BODY WT. CHANGE					
MEAN	48.2	49.7	46.4	37.3d	22.6d
S.D.	12.86	10.27	14.16	11.11	18.53
S.E.	2.63	2.10	2.89	2.22	3.95
N	24	24	24	25	22

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunnett's test

PUTSUv5.07 11/23/2011

PAGE 1

TABLE S8 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM SUMMARY OF FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

	(GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
AY	0 -	3					
		MEAN	19.	19.	19.	17.d	15.d
		S.D.	2.4	3.6	2.5	2.2	1.8
		S.E.	0.5	0.7	0.5	0.4	0.4
		N	24	24	25	25	24
DΑΥ	3 -	6					
		MEAN	21.	21.	20.	20.	19.c
		S.D.	1.7	3.1	2.4	1.4	1.8
		S.E.	0.3	0.6	0.5	0.3	0.4
		N	24	24	25	25	24
DΑΥ	6-	9					
		MEAN	23.	25.	24.	23.d	21.d
		S.D.	1.9	3.2	3.0	2.4	2.1
		S.E.	0.4	0.7	0.6	0.5	0.4
		N	24	24	25	25	24
DAY	9-	12					
		MEAN	24.	24.	24.	23.	22.d
		S.D.	1.7	2.3	2.1	2.0	2.2
		S.E.	0.3	0.5	0.4	0.4	0.4
		N	23	24	25	25	24
DΑΥ	12-	15					
		MEAN	27.	28.	27.	26.	24.d
		S.D.	2.0	2.8	2.9	3.8	4.5
		S.E.	0.4	0.6	0.6	0.8	0.9
		N	24	24	25	25	24

PAGE 1

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5.

c = Significantly different from control group 2 at 0.05 using Dunnett's test

d = Significantly different from control group 2 at 0.01 using Dunnett's test

NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

TABLE S8

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2

SPONSOR:AMERICAN PETROLEUM SUMMARY OF FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

		GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
DAY	15-	18 MEAN S.D. S.E. N	29. 2.7 0.5 24	30. 2.2 0.4 24	27. 4.5 0.9 25	25.d 4.0 0.8 25	23.d 4.6 1.0 21
DAY	18-	20 MEAN S.D. S.E. N	30. 2.7 0.5 24	30. 3.1 0.6 24	29. 3.1 0.6 25	28. 3.2 0.6 25	26.d 6.6 1.4 22
DAY	0 -	20 MEAN S.D. S.E. N	25. 1.5 0.3 24	25. 2.0 0.4 24	24. 1.8 0.4 25	23.d 1.6 0.3 25	21.d 2.1 0.5 22

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunnett's test

NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PGFWSUv5.16 11/11/2011

TABLE S9 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM SUMMARY OF FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

	(GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
DAY	0-	3					
		MEAN	74.	76.	75.	66.d	62.d
		S.D.	9.0	12.0	10.5	8.0	6.8
		S.E.	1.8	2.5	2.1	1.6	1.4
		N	24	24	25	25	24
DAY	3 -	6					
		MEAN	81.	81.	79.	77.	76.
		S.D.	4.8	9.0	6.9	5.2	5.1
		S.E.	1.0	1.8	1.4	1.0	1.0
		N	24	24	25	25	24
			21	21	23	23	21
OAY 6-	6-	9					
		MEAN	87.	93.a	89.	84.d	83.d
		S.D.	7.6	10.9	10.4	7.1	8.0
		S.E.	1.5	2.2	2.1	1.4	1.6
		N	24	24	25	25	24
DAY	9-	12					
		MEAN	85.	86.	85.	83.	80.d
		S.D.	5.9	5.5	5.2	7.1	6.1
		S.E.	1.2	1.1	1.0	1.4	1.2
		N	23	24	25	25	24
DAY	12-	15					
	=	MEAN	89.	94.	90.	89.	87.
		S.D.	6.8	9.2	7.6	11.7	14.0
		S.E.	1.4	1.9	1.5	2.3	2.9
		N	24	24	25	25	24

PAGE 1

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. a = Significantly different from control group 1 at 0.05 using two-sample t-test d = Significantly different from control group 2 at 0.01 using Dunnett's test NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM

TABLE S9 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SUMMARY OF FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

		GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY	
DAY	15-							
		MEAN	89.	91.	83.	83.c	81.c	
		S.D.	5.7	5.8	13.9	11.9	14.6	
		S.E.	1.2	1.2	2.8	2.4	3.2	
		N	24	24	25	25	21	
DAY	18-	20						
		MEAN	82.	84.	80.	84.	88.	
		S.D.	7.2	7.3	6.5	10.0	19.6	
		S.E.	1.5	1.5	1.3	2.0	4.2	
		N	24	24	25	25	22	
DAY	0 -	20						
		MEAN	83.	85.	82.c	80.d	79.d	
		S.D.	3.7	3.7	4.0	3.9	5.6	
		S.E.	0.8	0.8	0.8	0.8	1.2	
		N	24	24	25	25	22	

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. c = Significantly different from control group 2 at 0.05 using Dunnett's test

PGFWSUv5.16 11/11/2011 R:11/23/2011

PAGE 2

d = Significantly different from control group 2 at 0.01 using Dunnett's test NONGRAVID WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

	GROUP :	1	2	3	4	5	 	
NUMBER EXAMINED		25	25	25	25	25		
NO SIGNIFICANT CHANGES OBSERVED		24	24	24	24	19		
NONGRAVID AMMONIUM SULFIDE NEGATIVE		1	1	0	0	1		
DIAPHRAGM: HERNIA		0	0	1	0	0		
LIVER: AREA(S), WHITE		0	0	0	1	1		
BRAIN: PALE		0	0	0	0	2		
DIED GESTATION DAY 18		0	0	0	0	1		
SKIN: MATTING, RED		0	0	0	0	2		
LIVER: PALE		0	0	0	0	1		
PITUITARY: PALE		0	0	0	0	2		
DIED GESTATION DAY 19		0	0	0	0	1		
VAGINA: CONTENTS, DARK RED		0	0	0	0	1		
UTERUS: CONTENTS, DARK RED		0	0	0	0	1		

PMGSIv4.04 10/27/2011 TABLE S11 (GESTATION DAY 20)

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM SUMMARY OF ORGAN WTS. AND ORGAN WTS. RELATIVE TO BRAIN WTS.

		FEMAL			
GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
BRAIN (G)					
MEAN	1.98	1.96	1.96	1.97	1.94
S.D.	0.099	0.090	0.084	0.085	0.096
S.E.	0.020	0.018	0.017	0.017	0.021
N	24	24	25	25	22
LIVER (G)					
MEAN	16.17	15.68	16.17	16.24	15.32
S.D.	1.342	1.363	1.642	1.478	2.419
S.E.	0.274	0.278	0.328	0.296	0.516
N	24	24	25	25	22
LIVER (G/100 G BRAIN)					
MEAN	819.811	798.423	827.062	824.565	788.813
S.D.	77.9996	65.4161	80.6767	70.2748	114.1607
S.E.	15.9216	13.3530	16.1353	14.0550	24.3392
N	24	24	25	25	22
THYMUS (G)					
MEAN	0.2309	0.2335	0.2360	0.1837c	0.1314d
S.D.	0.08160	0.06419	0.07086	0.05480	0.03420
S.E.	0.01666	0.01310	0.01417	0.01096	0.00729
N	24	24	25	25	22
THYMUS (G/100 G BRAIN))				
MEAN	11.668	11.904	12.083	9.316d	6.776d
S.D.	3.9927	3.2693	3.6297	2.7569	1.7602
S.E.	0.8150	0.6673	0.7259	0.5514	0.3753
N	24	24	25	25	22

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5.

c = Significantly different from control group 2 at 0.05 using Dunnett's test

d = Significantly different from control group 2 at 0.01 using Dunnett's test

NONGRAVID WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

POFBSTv5.26 11/11/2011

PAGE 1

TABLE S12
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 1

SUMMARY OF FETAL DATA AT SCHEDULED NECROPSY

GROU	SEX JP M F	VIABLE FETUSES	DEAD FETUSES	RESORF EARLY	TIONS LATE		IMPLANTATION SITES	CORPORA LUTEA	PRE IMPLANTATION LOSS	FETAL WEIGHTS IN GRAMS	NO. OF GRAVID FEMALES
	TOTAL 186 160 MEAN 7.8 6.7 S.D. 2.49 2.51 S.E. 0.51 0.51	346 14.4 1.47 0.30	0 0.0 0.00 0.00	28 1.2 1.58 0.32	0.0 0.0 0.00	1.2 1.58	15.6	381 15.9 1.54 0.31	7 0.3 0.55 0.11	NA 3.7 0.29 0.06	24
	TOTAL 168 154 MEAN 7.0 6.4 S.D. 2.38 2.59 S.E. 0.49 0.53	322 13.4 2.96 0.60	0 0.0 0.00 0.00	24 1.0 1.18 0.24	0.0 0.00 0.00	1.0 1.18	346 14.4 3.12 0.64	370 15.4 2.89 0.59	24 1.0 1.44 0.29	NA 3.7 0.28 0.06	24
	TOTAL 165 175 MEAN 6.6 7.0 S.D. 2.55 2.38 S.E. 0.51 0.48	340 13.6 1.41 0.28	0 0.0 0.00 0.00	29 1.2 1.11 0.22	3 0.1 0.33 0.07	1.3 1.24	372 14.9 1.62 0.32	390 15.6 1.83 0.37	18 0.7 0.98 0.20	NA 3.6 0.29 0.06	25
	TOTAL 115 98 MEAN 4.6 3.9 S.D. 3.03 2.36 S.E. 0.61 0.47	213 8.5d 4.66 0.93	1 0.0 0.20 0.04	155 6.2 4.30 0.86	0.1 0.28 0.06	6.3 4.20	371 14.8 3.29 0.66	402 16.1 2.69 0.54	31 1.2 2.11 0.42	NA 3.2d 0.33 0.07	25
	TOTAL 30 29 MEAN 1.4 1.3 S.D. 2.13 1.36 S.E. 0.45 0.29	59 2.7d 2.95 0.63	0 0.0 0.00 0.00	259 11.8 3.95 0.84	0.3 0.55 0.12	12.0 3.96	324 14.7 3.74 0.80	339 15.4 3.00 0.64	15 0.7 1.32 0.28	NA 2.7d 0.55 0.15	22

MODIFIED STATISTICS USED.

SPONSOR: AMERICAN PETROLEUM

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01

NA = NOT APPLICABLE

MEAN NUMBER OF VIABLE FETUSES, MEAN NUMBER OF IMPLANTATION SITES, MEAN NUMBER OF CORPORA LUTEA, FETAL WEIGHTS COMPARED USING DUNNETT'S TEST OR TWO-SAMPLE T-TEST

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

PLSUv5.12 11/23/2011 R:11/23/2011 SPONSOR: AMERICAN PETROLEUM

TABLE S13 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 1 SUMMARY OF FETAL DATA AT SCHEDULED NECROPSY [% PER LITTER]

GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
CORPORA LUTEA					
MEAN	15.9	15.4	15.6	16.1	15.4
S.D.	1.54	2.89	1.83	2.69	3.00
S.E.	0.31	0.59	0.37	0.54	0.64
N	24	24	25	25	22
MPLANTATION SITES					
MEAN	15.6	14.4	14.9	14.8	14.7
S.D.	1.59	3.12	1.62	3.29	3.74
S.E.	0.32	0.64	0.32	0.66	0.80
N	24	24	25	25	22
/IABLE FETUSES (%)					
MEAN	93.0	93.5	91.8	57.2d	17.2d
S.D.	8.84	7.56	7.68	26.57	18.94
S.E.	1.80	1.54	1.54	5.31	4.04
N	24	24	25	25	22
DEAD FETUSES (%)					
MEAN	0.0	0.0	0.0	0.3	0.0
S.D.	0.00	0.00	0.00	1.54	0.00
S.E.	0.00	0.00	0.00	0.31	0.00
N	24	24	25	25	22
EARLY RESORPTIONS (%)					
MEAN	7.0	6.5	7.6	41.9d	81.1d
S.D.	8.84	7.57	7.01	27.21	19.79
S.E.	1.80	1.55	1.40	5.44	4.22
N	24	24	25	25	22

PROPORTIONAL (%) DATA COMPARED USING DUNN'S TEST

CORPORA LUTEA AND IMPLANTATION SITES COMPARED USING DUNNETT'S TEST OR TWO-SAMPLE T-TEST MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01

TABLE S13
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2

SUMMARY OF FETAL DATA AT SCHEDULED NECROPSY [% PER LITTER]

GROUP:	0 MG/KG/DAY SHAM	0 MG/KG/DAY VEH.	5 MG/KG/DAY	25 MG/KG/DAY	50 MG/KG/DAY
ATE RESORPTIONS (%)					
MEAN	0.0	0.0	0.7	0.5	1.7
S.D.	0.00	0.00	1.96	1.86	3.40
S.E.	0.00	0.00	0.39	0.37	0.72
N	24	24	25	25	22
OTAL RESORPTIONS (%)					
MEAN	7.0	6.5	8.3	42.5d	82.8d
S.D.	8.84	7.57	7.69	26.56	18.94
S.E.	1.80	1.55	1.54	5.31	4.04
N	24	24	25	25	22
RE-IMPLANTATION LOSS	5 (%)				
MEAN	1.8	7.7	4.3	8.1	5.9
S.D.	3.44	13.37	5.83	14.98	15.82
S.E.	0.70	2.73	1.17	3.00	3.37
N	24	24	25	25	22
OST-IMPLANTATION LOS	S (%)				
MEAN	7.0	6.5	8.3	42.8d	82.8d
S.D.	8.84	7.57	7.69	26.56	18.94
S.E.	1.80	1.55	1.54	5.31	4.04
N	24	24	25	25	22
IALES (%)					
MEAN	53.8	54.0	48.3	53.1	40.7
S.D.	16.46	17.13	17.34	21.34	29.67
S.E.	3.36	3.50	3.47	4.36	7.93
N	24	24	25	24	14

PROPORTIONAL (%) DATA COMPARED USING DUNN'S TEST MODIFIED STATISTICS USED.

SPONSOR: AMERICAN PETROLEUM

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM SUMMARY OF FETAL DATA AT SCHEDULED NECROPSY [% PER LITTER]

GROUP: 0 MG/KG/DAY SHAM 0 MG/KG/DAY VEH. 5 MG/KG/DAY 25 MG/KG/DAY 50 MG/KG/DAY FEMALES (%)
 46.2
 46.0
 51.7
 46.9

 16.46
 17.13
 17.34
 21.34

 3.36
 3.50
 3.47
 4.36

 24
 24
 25
 24
 MEAN 59.3 29.67 S.D. 7.93 S.E. MALE FETAL WEIGHTS (q) MEAN 3.8 0.32 0.07 3.8 3.8 0.31 0.06 3.8 3.7 0.33 0.07 3.4d 2.7d 3.4d 0.33 0.07 0.57 S.D. 0.07 S.E. 0.17 24 24 24 23 N 11 FEMALE FETAL WEIGHTS (q) 3.6 3.7 0.35 0.07 MEAN 3.5 3.1d 2.6d 3.1d 0.28 3.5 0.26 S.D. 0.53 S.E. 0.07 0.05 0.06 0.15 24 23 24 23 13 COMBINED FETAL WEIGHTS (q) 3.7 0.29 3.7 MEAN 3.7 3.6 3.2d 2.7d 3.2d 0.33 3.6 0.29 S.D. 0.55 S.E. 0.06 0.06 0.06 0.07 0.15 24 24 24 24 14

PROPORTIONAL (%) DATA COMPARED USING DUNN'S TEST

FETAL WEIGHTS COMPARED USING DUNNETT'S TEST OR TWO-SAMPLE T-TEST MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01

PLPSUv5.10 11/23/2011 R:11/23/2011

PAGE 3

TABLE S14 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 1 SPONSOR: AMERICAN PETROLEUM SUMMARY OF FETUSES AND LITTERS WITH MALFORMATIONS [ABSOLUTE NO.] DAY 20 ______ FETUSES 1 2 3 4 5 1 2 3 4 DOSE GROUP: NUMBER EXAMINED EXTERNALLY 346 322 340 213 2.5 2.4 LOCALIZED FETAL EDEMA 0 0 0 MICROPHTHALMIA AND/OR ANOPHTHALMIA NUMBER EXAMINED VISCERALLY 346 322 340 213 SITUS INVERSUS NUMBER EXAMINED SKELETALLY 346 322 340 213 VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY 0 Ω 0 0 STERNEBRA(E) MALALIGNED (SEVERE) 0 0 STERNOSCHISIS TOTAL NUMBER WITH MALFORMATIONS EXTERNAL : SOFT TISSUE : SKELETAL : 0 3 0 1 1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

PMALv5.08 12/07/2011 TABLE S15

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

TABLE S15

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2 SPONSOR: AMERICAN PETROLEUM SUMMARY OF LITTER PROPORTIONS OF MALFORMATIONS % PER LITTER DAY 20 DOSE GROUP: 1 2 3 4 5 NUMBER OF LITTERS EXAMINED VISCERALLY 24 24 25 24 14 MEAN 0.3 0.0 0.3 0.0 0.0 S.D. 1.28 0.00 1.54 0.00 0.00 S.E. 0.26 0.00 0.31 0.00 0.00

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

MODIFIED STATISTICS USED.

SITUS INVERSUS

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

STERNOSCHISIS

TABLE S15 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED					PAGE	3		
SPONSOR:AMERICAN PETROLEUM	M SUMMARY OF LITTER PROPORTIONS OF MALFORMATIONS % PER LITTER				DAY 20			
	DOSE GROUP:		1	2	3	4	5	
NUMBER OF LITTERS EXAMINED S	KELETALLY		24	24	25	24	14	
VERTEBRAL ANOMALY WITH OR W.	ITHOUT ASSOCIATED RIB ANOMALY	MEAN S.D. S.E.	0.0 0.00 0.00	0.0 0.00 0.00	0.6 3.08 0.62	0.0 0.00 0.00	0.9 3.34 0.89	
STERNEBRA(E) MALALIGNED (SE	VERE)	MEAN S.D. S.E.	0.3 1.28 0.26	0.0 0.00 0.00	0.0 0.00 0.00	0.0 0.00 0.00	0.0 0.00 0.00	

MEAN

S.D.

S.E.

0.8

3.71

0.76

0.0

0.00

0.00

0.0

0.00

0.00

0.0

0.00

0.00

0.0

0.00

0.00

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

TABLE S15

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM SUMMARY OF LITTER PROPORTIONS OF MALFORMATIONS					PAGE	4		
SPONSOR: AMERICAN PETROLEUM	SUMMARY OF LITTE	R PROPORTIO PER LIT		RMATIONS			DAY 2	0
	DOSE GROUP:		1	2	3	4	5	
NUMBER OF LITTERS EXAMINED			24	24	25	24	14	
TOTAL MALFORMATIONS								
PERCENT PER LITTER WITH EXTE	RNAL MALFORMATIONS	MEAN S.D. S.E.	0.4 1.86 0.38	0.0 0.00 0.00	0.3 1.67 0.33	0.0 0.00 0.00	0.0 0.00 0.00	
PERCENT PER LITTER WITH SOFT	TISSUE MALFORMATIONS	MEAN S.D. S.E.	0.3 1.28 0.26	0.0 0.00 0.00	0.3 1.54 0.31	0.0 0.00 0.00	0.0 0.00 0.00	
PERCENT PER LITTER WITH SKEL	ETAL MALFORMATIONS	MEAN S.D. S.E.	1.0 3.87 0.79	0.0 0.00 0.00	0.6 3.08 0.62	0.0 0.00 0.00	0.9 3.34 0.89	
TOTAL PERCENT PER LITTER WIT	H MALFORMATIONS	MEAN S.D. S.E.	1.3 4.41 0.90	0.0 0.00 0.00	0.9 3.44 0.69	0.0 0.00 0.00	0.9 3.34 0.89	

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

PMALKv5.07 12/07/2011

25 PRESACRAL VERTEBRAE

27 PRESACRAL VERTEBRAE

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM SUMMARY OF FETUSES AND LITTERS WITH VARIATIONS [ABSOLUTE NO.] DAY 20 ______ FETUSES DOSE GROUP: 1 2 3 4 5 1 2 3 4 346 322 340 213 59 24 NUMBER EXAMINED EXTERNALLY 24 25 24 14 NUMBER WITH FINDINGS 0 0 0 0 24 1 0 0 NUMBER EXAMINED VISCERALLY 346 322 340 213 59 24 25 24 14 0 0 1 RENAL PAPILLA(E) NOT DEVELOPED AND/OR DISTENDED URETER(S) 1 0 1 0 1 0 1 0 MAJOR BLOOD VESSEL VARIATION 0 0 0 0 0 0 0 0 HEMORRHAGIC RING AROUND THE IRIS 0 1 0 0 0
 346
 322
 340
 213
 59
 24
 24
 25
 24

 53
 48
 40
 35
 26
 11
 14
 9
 12
 NUMBER EXAMINED SKELETALLY STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED 12 0 7TH CERVICAL RIB(S) Ω 2 2 Ω 2 14 14TH RUDIMENTARY RIB(S) 37 27 36 13 3 12 16 CERVICAL CENTRUM #1 OSSIFIED 68 33 63 15 19 18 REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES 1 3 10 1 HYOID UNOSSIFIED REDUCED OSSIFICATION OF THE SKULL 1 PUBIS UNOSSIFIED STERNEBRA (E) MALALIGNED (SLIGHT OR MODERATE) STERNEBRA(E) #1, #2, #3 AND/OR #4 UNOSSIFIED 2 1 1 1 0BENT RIB(S) 0 2 0 0 0 0 Ω REDUCED OSSIFICATION OF THE 13TH RIB(S) 0 2 0 6 1 0 1 2 1

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

0 0

0 0 9 0 0

0 1 2

0

0 2 0

0 0 0 1

PMALv5.08 12/07/2011

PAGE 1

TABLE S17

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SDONSOR-AMERICAN DETROLEUM SIMMARY OF LITTER PRODORTIONS OF VARIATIONS

SPONSOR: AMERICAN PETROLEUM		ROPORTIONS OF VARIATIONS PER LITTER				DAY	20
	DOSE GROUP:	1	2	3	4	5	
NUMBER OF LITTERS EXAMINED EXTERNALLY NUMBER OF LITTERS WITH FINDINGS		24 0	24	25 0	24	14	

PAGE 1

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

¹⁻⁰ MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

TABLE S17

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM SUMMARY OF LITTER PROPORTIONS OF VARIATIONS PAGE 2 % PER LITTER DAY 20 ------DOSE GROUP: 1 2 3 4 5 NUMBER OF LITTERS EXAMINED VISCEPALLY 24 24 25 24 14

NUMBER OF LITTERS EXAMINED VISCERALLY		24	24	25	24	14
RENAL PAPILLA(E) NOT DEVELOPED AND/OR DISTENDED URETER(S)	MEAN	0.3	0.0	0.3	0.0	0.0
·	S.D.	1.46	0.00	1.43	0.00	0.00
	S.E.	0.30	0.00	0.29	0.00	0.00
MAJOR BLOOD VESSEL VARIATION	MEAN	0.0	0.0	0.0	0.4	0.0
	S.D.	0.00	0.00	0.00	2.04	0.00
	S.E.	0.00	0.00	0.00	0.42	0.00
HEMORRHAGIC RING AROUND THE IRIS	MEAN	0.0	0.3	0.0	0.0	0.0
	S.D.	0.00	1.70	0.00	0.00	0.00
	S.E.	0.00	0.35	0.00	0.00	0.00

¹⁻⁰ MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

TABLE S17 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SUMMARY OF LITTER PROPORTIONS OF VARIATIONS

PAGE 3

SPONSOR: AMERICAN PETROLEUM % PER LITTER DAY 20 1 2 3 4 5 DOSE GROUP: NUMBER OF LITTERS EXAMINED SKELETALLY 24 24 25 24 14
 MEAN
 15.2
 14.6
 11.8
 14.7
 50.2c

 S.D.
 25.12
 20.80
 19.02
 18.29
 33.09

 S.E.
 5.13
 4.25
 3.80
 3.73
 8.84
 STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED
 MEAN
 0.0
 0.6
 3.5
 0.6
 0.0

 S.D.
 0.00
 2.13
 10.44
 3.14
 0.00

 S.E.
 0.00
 0.44
 2.09
 0.64
 0.00
 7TH CERVICAL RIB(S)
 MEAN
 10.5
 8.0
 10.6
 5.7
 5.0

 S.D.
 12.04
 12.21
 12.70
 9.64
 10.00

 S.E.
 2.46
 2.49
 2.54
 1.97
 2.67
 14TH RUDIMENTARY RIB(S) MEAN 19.9 9.8 18.5 11.3 5.3 S.D. 19.60 11.37 21.16 24.37 15.14 S.E. 4.00 2.32 4.23 4.97 4.05 CERVICAL CENTRUM #1 OSSIFIED
 MEAN
 1.0
 0.5
 0.3
 1.1
 26.8

 S.D.
 3.87
 1.76
 1.54
 4.25
 38.56

 S.E.
 0.79
 0.36
 0.31
 0.87
 10.31
 REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES
 MEAN
 0.3
 0.2
 0.0
 0.0

 S.D.
 1.46
 1.20
 0.00
 0.00

 S.E.
 0.30
 0.25
 0.00
 0.00
 0.0 HYOID UNOSSIFIED 0.00 0.00 0.4 0.2 1.86 1.20 0.38 0.25 0.6 1.8 3.08 4.13 0.62 0.84 MEAN REDUCED OSSIFICATION OF THE SKULL 14.3 21.29 S.D. S.E. 5.69 PUBIS UNOSSIFIED MEAN 1.1 0.3 0.0 0.0 0.0 0.00 0.00 0.3 1.46 0.30 S.D. 5.57 0.00 26.73 S.E. 1.14 0.00 7.14

¹⁻⁰ MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. c = Significantly different from control group 2 at 0.05 using Dunn's test

TABLE S17

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 4 SPONSOR: AMERICAN PETROLEUM SUMMARY OF LITTER PROPORTIONS OF VARIATIONS % PER LITTER DAY 20 1 2 3 4 5 DOSE GROUP: NUMBER OF LITTERS EXAMINED SKELETALLY 24 24 25 24 14
 1.1
 1.2
 0.9
 2.3
 5.0

 2.61
 4.58
 2.57
 4.07
 10.00

 0.53
 0.94
 0.51
 0.83
 2.67
 STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) MEAN S.D. S.E.
 MEAN
 0.6
 0.3
 0.3
 0.4

 S.D.
 2.17
 1.28
 1.67
 1.86

 S.E.
 0.44
 0.26
 0.33
 0.38
 STERNEBRA(E) #1, #2, #3 AND/OR #4 UNOSSIFIED 0.0 0.00 0.00
 MEAN
 0.0
 0.7
 0.0
 0.0

 S.D.
 0.00
 2.31
 0.00
 0.00

 S.E.
 0.00
 0.47
 0.00
 0.00
 BENT RIB(S) 0.0 0.00 0.00
 MEAN
 0.0
 0.6
 1.8
 0.3

 S.D.
 0.00
 2.92
 6.38
 1.57

 S.E.
 0.00
 0.60
 1.28
 0.32
 REDUCED OSSIFICATION OF THE 13TH RIB(S) 0.0
 MEAN
 0.0
 0.0
 2.6
 0.0

 S.D.
 0.00
 0.00
 11.47
 0.00

 S.E.
 0.00
 0.00
 2.29
 0.00
 0.0 25 PRESACRAL VERTEBRAE 0.00 MEAN 0.0 0.0 S.D. 0.00 0.00 S.E. 0.00 0.00 0.0 0.3 0.00 1.70 0.00 0.35 27 PRESACRAL VERTEBRAE 3.6 9.08 2.43

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. None significantly different from control group

¹⁻⁰ MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

TABLE S17 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 5 SPONSOR:AMERICAN PETROLEUM SUMMARY OF LITTER PROPORTIONS OF VARIATIONS % PER LITTER DAY 20 1 2 3 4 5 DOSE GROUP: NUMBER OF LITTERS EXAMINED 24 24 25 24 14 TOTAL VARIATIONS
 MEAN
 0.0
 0.0
 0.0
 0.0
 0.0

 S.D.
 0.00
 0.00
 0.00
 0.00
 0.00

 S.E.
 0.00
 0.00
 0.00
 0.00
 0.00
 MEAN PERCENT PER LITTER WITH EXTERNAL VARIATIONS
 MEAN
 0.3
 0.3
 0.3
 0.4
 0.0

 S.D.
 1.46
 1.70
 1.43
 2.04
 0.00

 S.E.
 0.30
 0.35
 0.29
 0.42
 0.00
 PERCENT PER LITTER WITH SOFT TISSUE VARIATIONS
 MEAN
 42.3
 32.6
 38.1
 34.1
 82.9d

 S.D.
 24.72
 25.67
 24.24
 26.50
 22.13

 S.E.
 5.05
 5.24
 4.85
 5.41
 5.92
 PERCENT PER LITTER WITH SKELETAL VARIATIONS 82.9d
 MEAN
 42.6
 33.0
 38.4
 34.1
 82.9d

 S.D.
 24.22
 25.85
 24.07
 26.50
 22.13

 S.E.
 4.94
 5.28
 4.81
 5.41
 5.92
 82.9d TOTAL PERCENT PER LITTER WITH VARIATIONS

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY MODIFIED STATISTICS USED.

For statistical analyses, control group 1 was compared to group 2; control group 2 was compared to groups 3, 4 and 5. d = Significantly different from control group 2 at 0.01 using Dunn's test

> PMALKv5.07 12/07/2011 R:12/13/2011

APPENDIX A

Study Protocol and Deviations

DEVIATIONS FROM THE PROTOCOL

This study was conducted in accordance with the protocol and protocol amendments, except for the following.

PLANNED DEVIATIONS

• **Protocol Section 8.5.4** states that all animals would be dosed at approximately the same time each day. Beginning on 19 September 2011, the start of dosing was adjusted gradually to an earlier start time.

Reason for Deviation: The adjustment in the start time of dosing facilitated study activities during normal business hours of the Testing Facility.

UNPLANNED DEVIATIONS

• **Protocol Section 8.1** states that during the quarantine period, each rat would be observed twice daily for changes in general appearance and behavior. On 6 September 2011, there is no documentation of the morning check.

Reason for Deviation: Technician error.

• **Protocol Section 8.2** states that after confirmation of mating, the female would be returned to an individual suspended wire-mesh cage (assigned to a group), and the day would be designated as day 0 of gestation. On 19 September 2011, animals that were not confirmed as having mated were separated from the breeder males and placed into clean caging with a food jar, as a sufficient number of animals needed for study had already shown evidence of mating. The breeder males were then transferred to another room for breeding. During a cage change out for the breeder males, female no. 26450 was found still paired up by animal husbandry. Female no. 26450 was immediately removed from the study room, euthanized in the necropsy holding room, and was discarded.

Reason for Deviation: Technician error.

• **Protocol Section 8.4** states that a different set of clippers would be used for control and treated animals to avoid potential for cross-contamination. On 30 September 2011 (gestation day 12, 13, 14, 15, 16, or 17), there is no documentation of the control clippers being used for shaving the control animals.

Reason for Deviation: Technician error.

• **Protocol Section 8.5.4** states that following the 6-hour exposure period, the test site would be gently patted using a disposable paper towel in an effort to remove the residual test substance. On 21 September 2011 (gestation day 3, 4, 5, 6, 7, or 8), residual test substance was removed from females in the 5 and 50 mg/kg/day groups at 5 hours 59 minutes following exposure.

Reason for Deviation: Technician error.

• **Protocol Section 8.5.4** states that all animals would be dosed at approximately the same time each day. On gestation day 17, confirmation of dose time for female no. 26454 in the 5 mg/kg/day group was not recorded online. The previous animal, female no. 26421, was dosed at 1006. The animal following female no. 26454, which was female no. 26343, was dosed at 1007. Female no. 26454 was entered late into the computer with a time of 1007 to allow for post-dosing observation collection; however, the exact time of dose cannot be determined for this animal.

Reason for Deviation: Technician error.

• **Protocol Section 8.7.1** states that all animals would be observed at the time of dosing during the treatment period. On gestation day 17 (3 October 2011), female no. 26454 in the 5 mg/kg/day group did not have a time of dosing observation recorded.

Reason for Deviation: Technician error.

• **Protocol Section 8.7.4** states that individual food consumption would be recorded on gestation days 0, 3, 6, 9, 12, 15, 18, and 20. On gestation day 18, female nos. 26314 and 26436 in the 50 mg/kg/day group did not have a food left value recorded. Therefore, no food consumption data exists for these 2 animals from gestation days 15-18.

Reason for Deviation: Technician error.

Protocol Section 8.8.3.1 states that each viable fetus would be examined in detail, sexed, weighed, euthanized by a subcutaneous injection of sodium pentobarbital in the scapular region and tagged. After the fetuses from dam no. 26328 in the 5 mg/kg/day group had been examined, sexed, weighed, and euthanized, the box was dropped and fetuses nos. 7 and 13 fell from their assigned compartments. Since both fetuses were female, it was unable to determine which fetus belonged to site no. 7 and which belonged to site no. 13. These fetuses were arbitrarily assigned and placed back in the box for subsequent visceral examination and tagging.

Reason for Deviation: Technician error.

GLP DEVIATIONS

• A GLP deviation from sections 792.83 of 40 CFR Part 792 and 4.4 of OECD [C(97) 186/Final] occurred on 6 October 2011 when standards and quality control samples prepared on 30 September 2011 were injected for processed sample stability. The ethyl acetate (ACC#14089) used to wash the column between samples was expired. It is believed at this time that the use of expired ethyl acetate had no effect on the outcome of this study.

These deviations did not negatively impact the quality or integrity of the data nor the outcome of the study.

Study Number: WIL-402016

PROTOCOL AMENDMENT 5

Sponsor: American Petroleum Institute

Title of Study:

A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats

Protocol Modifications:

The following revision to Amendment 4 is added:

1) 10 Statistical Methods:

For all statistical analysis, the treated groups (Groups 3, 4 and 5) will be compared to the vehicle group (Group 2), and the vehicle group (Group 2) will be compared to the sham group (Group 1). All-analysis The analysis between Groups 1 and 2 will be conducted using a two sample t-test (Snedecor and Cochran, 1980).

Reasons for Protocol Modification:

1) This modification clarifies the statistics to be performed.

Approval:	
Sponsor's approval was obtained via amal	on 09 Nov 2511
	Date
WIL Research Laboratories, LLC	
	09NOV2011
Seffrey H. Charlap, MS	Date
Study Director	
Davald Jr. Str. p	9 Nov 2011
Donald G. Stump, PhD, DABT	Date
Senior Director, Developmental and Reproductive Toxicology	
American Petroleum Institute	
Russell White, PhD Sponsor Representative	1 <u>0 Ws J. Zol</u> (Date

Study Number: WIL-402016

PROTOCOL AMENDMENT 4

Sponsor: American Petroleum Institute

Title of Study:

A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats

Protocol Modifications:

The following paragraph is added:

1) 10 Statistical Methods:

For all statistical analysis, the treated groups (Groups 3, 4 and 5) will be compared to the vehicle group (Group 2), and the vehicle group (Group 2) will be compared to the sham group (Group 1). All analysis will be conducted using a two sample t-test (Snedecor and Cochran, 1980).

Reasons for Protocol Modification:

1) This modification clarifies the statistics to be performed.

WIL-402016 Amendment 4

	Page 2 of 2		Protocol Amendment
Approval:			
Sponsor's app	roval was obtained via <u>email</u>	on	04 Nov Zoll Date
WIL Researc	h Laboratories, LLC		
	Seffrey H. Charlap, MS Study Director	-	OY Way Zoll Date
	Donald G. Stump, PhD, DABT	-	U Niv 2011 Date
	Senior Director, Developmental and Reproductive Toxicology		
American Pe	iroleum Institute		
	Russell White, PhD Sponsor Representative		10 Nov_ 2011 Date

Study Number: WIL-402016

PROTOCOL AMENDMENT 3

Sponsor: American Petroleum Institute

Title of Study:

A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats

Protocol Modifications:

The following section is added:

1) 10.4 Organ Weight Data:

Organ weights (relative to brain weights) will be subjected to a parametric ANOVA test (Snedecor and Cochran, 1980) and Dunnett's test (1964) as described above.

Reasons for Protocol Modification:

1) This modification adds information on the statistics to be performed on the organ weight data.

Sponsor Representative

Study Number: WIL-402016

PROTOCOL AMENDMENT 2

Sponsor: American Petroleum Institute

Title of Study:

A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats

Protocol Modifications:

1) 8.5.4 Treatment Regimen:

The last sentence in the first paragraph of the following section is revised as follows:

If the test substance does not cover at least 10% of the total body surface, the actual body surface area covered by the test substance will be documented for 2 representative rats/sex/group once weekly.

2) 8.6.3 Concentration and Homogeneity Analysis

The first sentence in the first paragraph of the following section is revised as follows:

Two sets of duplicate samples will be collected from the top, middle, and bottom stratum of each test substance dosing formulation on the first and last days of preparation.

3) 8.8.3.3 Skeletal

The following section is revised as follows:

Each eviscerated fetus, following fixation in alcohol, will be macerated in potassium hydroxide and stained with Alizarin Red S and Alcian Blue by a method similar to that described by Dawson (1926) and Inouye (1976). The skeletal examination will be made following this procedure.

Reasons for Protocol Modification:

- 1) This modification clarifies frequency the surface area will be documented if 10% of the body surface is not covered by the test substance.
- 2) This modification clarifies that samples will be collected for each dosing formulation.
- 3) This modification clarifies the procedure for processing the fetal skeletons.

Page 3 of 3

Approval:	
Sponsor's approval was obtained via	on <u>09 Sep 2011</u> . Date
	Date
WIL Research Laboratories, LLC	
	09segzo11 Date
Jeffrey H. Charlap, MS	Date
Study Director	
Edu I St	09 Sept. 2011 Date
Donald G. Stump, PhD, DABT	Date
For Senior Director, Developmental and Reproductive Toxicology	
reproductive Tollers, p	
American Petroleum Institute	
Russell A Wite	130 ctobor 2011
Russell White, PhD	Date
Sponsor Representative	

Study Number: WIL-402016

PROTOCOL AMENDMENT 1

Sponsor: American Petroleum Institute

Title of Study:

A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats

Protocol Modifications:

1) 8.5.1 Organization of Test Groups:

The footnote is revised as follows:

a- The test substance used for Groups 3-5 is Clarified oils, catalytic cracked (CAS 64741-62-4), also known as catalytic cracked slurry oil.

2) 8.7.6 Premature Deliveries:

The following sentence in this section is revised:

The **cranial**, thoracic, abdominal, pelvic cavities will be opened and the organs examined.

3) 8.8.1 Laparohysterectomy and Macroscopic Examination:

The following sentence in this section is revised:

The **cranial**, thoracic, abdominal, pelvic cavities will be opened and the organs examined.

4) 8.8.2.1 Macroscopic Examination:

The following section is revised as follows:

Page 2 of 4

Treated skin
Untreated skin (right hindlimb)
Liver (2 sections)
Brain
Thymus
All gross lesions^a

5) Appendix A (see below) is added to this protocol as per section 8.7.2.

Reasons for Protocol Modification:

- 1) This modification corrects the CAS number of the Test Article
- 2) This sentence is being revised because the brain is being collected.
- 3) This sentence is being revised because the brain is being collected.
- 4) This section is revised to collect untreated tissue and for clarification of the liver collection.
- 5) This modification adds Appendix A to the protocol.

WIL-402016 Protocol Amendment 1

Page 3 of 4

Approval:	
Sponsor's approval was obtained via	on 08 sq zeil Date
	' Date
WIL Research Laboratories, LLC	
	09 2024
Jeffrey H. Charlap, MS	Date
Study Director	- 171 .
2110184	09 Sept 2011
Donald G. Stump, PhD, DABT	09 Sept 2011
Senior Director, Developmental and	Daic
Reproductive Toxicology	
Sponsor Name	
Runge N (At	0300+2011
Russell White, PhD	Date
Sponsor Representative	Duto
등 그는 그 그 그 그 사람이 가장 하는 것이 없는 것이었다면 없어요.	

APPENDIX A

SCORING CRITERIA FOR DERMAL REACTIONS

Evaluation of Dermal Reactions*

<u>Value</u>	Erythema and Eschar Formation	Computer Designation
0 1	No erythema Very slight erythema (barely perceptible, edges of area not well defined)	No erythema Very slight erythema
2	Slight erythema (pale red in color and edges definable)	Slight erythema
3	Moderate to severe erythema (definite red in color and area well defined)	Moderate erythema
4	Severe erythema (beet or crimson red) to slight eschar formation (injuries in depth)	Severe erythema
•	Edema Formation	Computer Designation
0 1	No edema Very slight edema (barely perceptible, edges of area not well defined)	No edema Very slight edema
2	Slight edema (edges of area well defined by definite raising)	Slight edema
3	Moderate edema (raised approximately 1 mm)	Moderate edema
4	Severe edema (raised more than 1 mm and extending beyond area of exposure)	Severe edema

^{*}Draize, J. H., 1965. The Appraisal of the Safety of Chemicals in Foods, Drugs and Cosmetics. Dermal Toxicity, pp. 46-59. Assoc. of Food and Drug Officials of the U.S., Topeka, Kansas.

WIL-402016 August 31, 2011

PROTOCOL

A DERMAL PRENATAL DEVELOPMENTAL TOXICITY STUDY OF CLARIFIED OILS, CATALYTIC CRACKED IN RATS

(U.S. EPA OCSPP and OECD Guidelines)

WIL Study Number: WIL-402016

Submitted To:

American Petroleum Institute 1220 L Street, NW Washington, DC 20005

WIL Research Laboratories, LLC 1407 George Road Ashland, OH 44805-8946

1 OBJECTIVE:

The objectives of this study are to 1) To determine the effects of prenatal, dermal exposure to test material on pregnant rats and developing offspring. 2) To provide data to verify/expand the domain of the PAC (polycyclic aromatic compounds) prenatal models for predicting the toxicity of high-boiling petroleum substances from their PAC content. 3) To further test the hypothesis that developmental toxicity endpoints are more sensitive to effects of high-boiling petroleum substances than other reproductive endpoints, such as fertility or reproductive organ weight and histopathology.

This study will be conducted in accordance with the United States Environmental Protection Agency (EPA) Health Effects Test Guidelines OCSPP 870.3700, Prenatal Developmental Toxicity Study, August, 1998 and the Organisation of Economic Co-operation and Development Guidelines (OECD) for Testing of Chemicals Guideline 414, Prenatal Developmental Toxicity Study, January 2001. This study will be conducted in compliance with the EPA/TSCA and OECD [C(97) 186/Final] Principles of Good Laboratory Practice.

2 PERSONNEL INVOLVED IN THE STUDY:

2.1 Sponsor's Representative:

Russell White, PhD American Petroleum Institute 1220 L Street, NW Washington, DC 20005 Tel: (202) 682-8344 Email: whiter@api.org

2.2 Sponsor's Technical Monitor:

Katy O. Goyak, PhD Senior Toxicologist ExxonMobil Biomedical Sciences, Inc. 1545 Route 22 East Annandale, New Jersey 08801 Tel: (908) 730-1017

Email: katy.o.goyak@exxonmobil.com

2.3 WIL Study Director:

Jeffrey H. Charlap, M.S. Staff Toxicologist, Developmental and Reproductive Toxicology

Tel: (419) 289-8700 Fax: (419) 289-3650

Email: jcharlap@wilresearch.com

2.4 WIL Departmental Responsibilities:

Prägati Sawhney Coder, PhD, DABT Senior Toxicologist, Developmental and Reproductive Toxicology Emergency Contact

Tel: (419) 289-8700 Fax: (419) 289-3650

E-mail: pscoder@wilresearch.com

Mark D. Nemec, BS, DABT President and Chief Operating Officer

Donald G. Stump, PhD, DABT Senior Director, Developmental and Reproductive Toxicology

Eddie D. Sloter, PhD
Assistant Director, Developmental and
Reproductive Toxicology

Melissa J. Beck, PhD Assistant Director, Neurosciences and Head of Juvenile Toxicology

Bennett J. Varsho, MPH, DABT Director, Operations

Gwendalyn M. Maginnis, DVM Clinical Veterinarian

Carol A. Kopp, BS, LAT Manager, Gross Pathology and Developmental Toxicology Laboratory George A. Parker, DVM, PhD, DACVP, DABT Vice President, Pathology

Eric S. Bodle, PhD Assistant Director, Analytical Chemistry

Ronald E. Wilson, BS Director, Informational Systems

Heather L. Johnson, BS RQAP-GLP Manager, Quality Assurance

Robert A. Wally, BS Operations Manager, Reporting and Technical Support Services

3 STUDY SCHEDULE:

Proposed Experimental Starting

(Animal Receipt) Date:

September 1, 2011

Proposed Experimental Start

(First Day of Dosing) Date:

September 13, 2011

Proposed Experimental

Completion/Termination Date:

October 03, 2011

Proposed Audited Report Date:

December 16, 2011

4 TEST SUBSTANCE DATA:

4.1 Test Substance Shipment:

Test Substance is stored with applicable documentation of characterization at the Testing Facility.

If additional Test Substance is required, applicable documentation of characterization will be shipped under Sponsor's responsibility to:

Formulations Laboratory (WIL-402016; Jeffrey H. Charlap, MS)

Attn: Larry Blessing

WIL Research Laboratories, LLC

1407 George Road

Ashland, Ohio 44805-8946

Tel: (419) 289-8700 Fax: (419) 289-3650

Email: lblessing@wilresearch.com

4.2 Identification:

Clarified oils, catalytic cracked (CAS# 64741-62-4)

Also known as catalytic cracked slurry oil

4.3 Lot Number:

Site #12: Sample #2

4.4 Expiration/Retest Date:

Retest in 5 years

4.5 Purity:

100%

4.6 Stability:

The test substance is considered to be stable under the storage conditions provided by the Sponsor.

4.7 Physical Description:

To be documented by WIL Research Laboratories, LLC.

4.8 Storage Conditions:

Room temperature, protected from light.

4.9 Reserve Samples:

Reserve samples of the test substance will be taken in accordance with WIL Standard Operating Procedures and stored in the Archives at WIL Research Laboratories, LLC indefinitely, unless otherwise specified.

4.10 Personnel Safety:

Routine safety precautions apply. It is the responsibility of the Sponsor to notify the testing facility of any special handling requirements for the test substance. A Material Safety Data Sheet (MSDS) will be provided.

4.11 Test Substance Disposition:

Unless otherwise indicated, all unused test substance will be retained for subsequent studies or returned to the Sponsor's contact listed below:

EPL Archives, Inc. 45610 Terminal Drive Sterling, VA 20166 Attn: Joseph Ludi (703) 435-8780 x212

5 VEHICLE CONTROL DATA:

5.1 Identification:

Acetone, Min. 99.0% (2-propanone, CAS# 67-64-1, Spectrum Chemical Mfg. Corpl, product code AC115).

5.2 Lot Number:

To be documented by WIL Research Laboratories, LLC.

5.3 Expiration/Retest Date:

To be documented by WIL Research Laboratories, LLC.

5.4 Stability:

The test substance is considered to be stable under the storage conditions provided by the Supplier.

5.5 Storage Conditions:

Room temperature.

6 TEST SYSTEM:

6.1 Species:

Rat

6.2 Strain:

Sprague Dawley Crl:CD(SD)

6.3 Source:

Charles River Laboratories, Inc. (Facility to be documented in the study records)

6.4 Number of Study:

125 females (maximum of 155 purchased). A sufficient number of sexually mature untreated resident males of the same strain and source will be used to induce pregnancies. Animals not assigned to the study will be transferred to the stock animal colony or will be euthanized by carbon dioxide inhalation and the carcasses discarded.

The number of animals selected for this study is based on the US EPA Health Effects Test Guidelines OCSPP 870.3700, Prenatal Development Toxicity Study, August 1998 and the OECD Guidelines for Testing of Chemicals Guideline 414, Prenatal Developmental Toxicity Study, January 2001.

6.5 Body Weight Range:

A minimum of 220g at initiation of breeding.

6.6 Approximate Age:

80 to 120 days at the initiation of breeding.

6.7 <u>Identification System:</u>

The animals will be uniquely identified by a Monel[®] metal ear tag displaying the animal number. Individual cage cards will be affixed to each cage and will display the animal number, group number, study number, dosage level and sex of the animal.

6.8 Justification for Selection:

This species and strain of rat has been recognized as appropriate for developmental toxicity studies. WIL Research Laboratories, LLC has historical data on the background incidence of fetal malformations and developmental variations in the Crl:CD(SD) rat. This animal model has been proven to be susceptible to the effects of developmental toxicants.

7 SPECIFIC MAINTENANCE SCHEDULE:

7.1 Animal Housing:

Female rats will be individually housed (except during mating) in clean suspended wire-mesh cages in an environmentally controlled room during the study. The cages will be elevated above cage-board or other suitable material, which will be changed at least three times each week. Nesting material will not be provided, as euthanasia is scheduled prior to anticipated parturition. The cages will be subjected to routine cleaning at a frequency consistent with maintaining good animal health and WIL Standard Operating Procedures. The facilities at WIL Research Laboratories, LLC are accredited by the Association for Assessment and Accreditation of Laboratory Animal Care International (AAALAC International).

7.2 Environmental Conditions:

Controls will be set to maintain temperature at $71 \pm 5^{\circ}F$ ($22 \pm 3^{\circ}C$) and relative humidity at $50 \pm 20\%$. Temperature and relative humidity will be monitored continuously. Data for these two parameters will be scheduled for automatic collection on an hourly basis. Fluorescent lighting controlled by light timers will provide illumination for a 12-hour light/dark photoperiod. The ventilation rate will be set at a minimum of 10 room air changes per hour, 100% fresh air.

7.3 **Drinking Water:**

Reverse osmosis-purified water will be available *ad libitum*. Filters servicing the automatic watering system are changed regularly according to WIL Standard Operating Procedures. The municipal water supplying the laboratory is analyzed according to WIL Standard Operating Procedures on a routine basis to ensure that contaminants are not present in concentrations that would be expected to affect the outcome of the study.

7.4 Basal Diet:

PMI Nutrition International, LLC Certified Rodent LabDiet® 5002 will be offered ad libitum during the study and provided without savers and lids to accommodate feeding with collars. Periodic analyses of the certified feed are performed by the manufacturer to ensure that heavy metals and pesticides are not present at concentrations that would be expected to affect the outcome of the study. Results of the analyses are provided to WIL Research Laboratories, LLC by the manufacturer. Feeders will be changed and sanitized once per week.

8 EXPERIMENTAL DESIGN:

8.1 Animal Receipt and Quarantine:

Each rat will be inspected by a qualified technician upon receipt. Rats judged to be in good health and suitable as test animals will be immediately placed in quarantine for a minimum of 10 days. All rats will be initially weighed, permanently identified with a metal ear tag and receive a clinical observation. During the quarantine period, each rat will be observed twice daily for changes in general appearance and behavior. Body weights may be recorded prior to the initiation of breeding. Prior to the start of the in-life phase, those rats judged to be suitable test subjects will be identified. The animals will be acclimated to the Elizabethan-style collars prior to the mating period. The collars will be affixed to each rat for approximately 1, 4, 8 and at least 24 hours per day during the quarantine period.

8.2 Breeding Procedure:

At the conclusion of the quarantine period, female rats judged to be suitable test subjects and meeting acceptable body weight requirements will be cohabitated with untreated resident male rats (1:1) of the same strain and source in suspended wire-mesh cages for mating (home cage of the male). Detection of mating will be confirmed by evidence of a copulatory plug in the vagina or by a vaginal lavage for sperm. After confirmation of mating, the female will be returned to an individual suspended wire-mesh cage (assigned to a group), and the day will be designated as day 0 of gestation.

8.3 Randomization:

Mated females will be assigned to groups using a WIL Toxicology Data Management System (WTDMS $^{\text{TM}}$) computer program which assigns animals based on stratification of gestation day 0 body weights into a block design to one vehicle control group, one sham control group and three test substance groups of 25 rats each.

Any animal assigned to the study that is found dead, euthanized *in extremis* or exhibits abnormal clinical signs, reduced food consumption or body weight losses prior to the start of dosing may be replaced by an animal of appropriate gestation age when possible. Replacement animals will be arbitrarily assigned (not computer randomized) to the study based on comparable body weights (if possible) with respect to the animal that was replaced.

8.4 Route and Rationale of Test Substance Administration:

The route of administration will be dermal as this is a potential route of exposure for humans.

All animals will be clipped in the dorsal scapular area (covering approximately 10% of the body surface) prior to the start of dose administration and, as needed, thereafter during the administration period (repeated clippings will be performed prior to or at least 2-4 hours after dose administration). A different set of clippers will be used for control and treated animals to avoid potential for cross-contamination. Care will be taken not to abrade the skin. The test article and vehicle will be applied approximately in the center of the clipped area and distributed to avoid running.

Elizabethan-style collars will be used to minimize ingestion of the test material. Collars will be worn continually during the exposure period and removed during weighing. Collars will be fitted on the rats several days prior to the initiation of dosing and replaced as necessary during the dosing period.

8.5 Organization of Test Groups, Dosage Levels and Treatment Regimen:

8.5.1 Organization of Test Groups:

The dosage levels will be determined from results of previous studies and will be provided by the Sponsor Representative after consultation with the WIL Study Director.

The following table presents the study group arrangement.

		Dosage	Dosage	Dosage	Number
Group		Level	Concentration	Volume	of
Number	Test Substance	(mg/kg/day)	(mg/mL)_	(mL/kg)	Females
1	Sham Control	0	0	0	25
2	Vehicle Control	0	0	1.5	25
3	Test substance ^a	5	3.3	1.5	25
4	Test substance ^a	25	16.7	1.5	25
5	Test substance ^a	50	33.3	1.5	25

a- The test substance used for Groups 3-5 is Clarified oils, catalytic cracked (CAS-4741-62-4), also known as catalytic cracked slurry oil.

8.5.2 Sham Control:

The Group 1 sham control animals will be subject to the same procedures (i.e. shaving, collaring, sham dosing with glass rod and removal of residual test substance) as animals in Groups 2-5. However, no vehicle or test substance will be applied to the sham control animals.

8.5.3 Vehicle Control Substance:

Acetone, Min. 99.0% (2-propanone, CAS# 67-64-1, Spectrum Chemical Mfg. Corpl, product code AC115).

8.5.4 Treatment Regimen:

The test article will be administered as a single daily dose, applied over as much of the the clipped dorsal scapular area (approximately 10% of total body surface area) as possible and distributed to avoid running, from fertilization through the period of major organogenesis, gestation days 0 through 19. The four comers of the application site will be delineated on each presumed pregnant rat with indelible ink to allow proper identification of the treated and untreated skin. If the test substance does not cover at least 10% of the total body surface, the actual body surface area covered by the test substance will be documented for 2 representative rats/sex/group.

All animals will be dosed at approximately the same time each day. Following the 6-hour exposure period, the test site will be gently patted using a disposible paper towel in an effort to remove the residual test substance. If needed, the test site can be gently patted with gauze moistened with the vehicle and then again with dry gauze or dry disposable paper towel.

8.5.5 Adjustment of Doses:

Individual dosages will be calculated on the most recent body weight to provide the proper mg/kg/day dosage.

8.6 Preparation and Analysis of Test Substance Formulations:

8.6.1 Method and Frequency of Preparation:

The test substance will be prepared for dosing as a weight-to-volume mixture in acetone. The dosing formulations will be prepared approximately weekly. A complete and detailed description of the methods of test substance preparation will be included in the study records and described in the final report.

8.6.2 Homogeneity, Resuspension Homogeneity, and Stability of Test Substance Formulations

Analyses to demonstrate homogeneity and resuspension homogeneity as well as at least 18-day room temperature stability for the range of concentrations to be used on this study was conducted by the Analytical Chemistry Department at WIL Research Laboratories, LLC (WIL-402029, Haubenstricker, Draft).

8.6.3 Concentration and Homogeneity Analysis

Two sets of duplicate samples will be collected from the top, middle, and bottom stratum of each test substance formulation on the first and last days of preparation. Each sample will be collected using a class A glass volumetric pipette from the middle of each stratum of each formulation. One set of duplicate samples will be stored at room temperature as reserve samples and will be discarded upon the Study Director's approval of results. The other set of samples will be analyzed using a method validated by WIL Research Laboratories, LLC to confirm concentration and homogeneity of the bulk test substance formulations.

An analytical chemistry report will be included as an appendix to the main report.

8.7 Maternal Observations During Gestation:

8.7.1 Appearance and Behavior:

Each rat will be observed twice daily for moribundity and mortality, once in the morning and once in the afternoon from gestation day 0 until euthanasia. Clinical observations will be recorded daily. Mortality and all signs of overt toxicity will be recorded on the day observed. The observations shall include, but are not limited to, evaluation for changes in appearance of skin and fur, eyes, mucous membranes, respiratory and circulatory system, autonomic and central nervous systems, somatomotor activity and behavior. All animals will also be observed on the day of necropsy and any findings will be recorded.

During the treatment period, each animal will be observed at the time of dosing and approximately 1 - 2 hours following each sham and dose administration for findings that are potentially related to treatment or that might change before the next scheduled observation. Additional post-dosing observations may be necessary and will be documented in the study records.

8.7.2 Dermal Observations:

Application sites will be examined for erythema, edema and other dermal findings daily (prior to dose administration) using a four-step grading system in accordance with the method of Draize (Appendix A), and inspected for remarkable changes. Other dermal findings, if present, will be noted.

8.7.3 Body Weights:

Individual body weights will be recorded once prior to breeding and on gestation days 0, 3, 6, 9, 12, 15, 18, and 20. Collars will be removed during collection of body weights.

8.7.4 Food Consumption:

Individual food consumption will be recorded on gestation days 0, 3, 6, 9, 12, 15, 18, and 20. Food intake will be reported as g/animal/day and g/kg/day for each corresponding body weight interval of gestation.

8.7.5 Deaths and Animals Euthanized in Extremis:

Females not surviving until the scheduled euthanasia will be necropsied and cause of death recorded, if possible. Rats not expected to survive to the next observation period (moribund) will be euthanized by carbon dioxide inhalation. The cranial, thoracic, abdominal and pelvic cavities will be opened and the organs examined. The number and location of implantation sites and viable fetuses will be recorded. Corpora lutea will also be counted and recorded. Uteri which appear nongravid by macroscopic examination will be opened and placed in a 10% ammonium sulfide solution (Salewski, 1964) for detection of early implantation loss. Gross lesions will be preserved 10% neutral-buffered formalin for possible future histopathologic examination. Carcasses from adult animals will be discarded. Viable fetuses will be euthanized by a subcutaneous injection of sodium pentobarbital in the scapular region. Recognizable fetuses will be examined externally and preserved in 10% neutral-buffered formalin for possible future analysis. Maternal tissues will be collected and preserved as described in Section 8.8.2.1 and organ weights will be collected on animals euthanized in extremis only as described in Section 8.8.2.2.

8.7.6 Premature Deliveries:

Females that deliver prematurely will be euthanized by carbon dioxide inhalation that day. The thoracic, abdominal and pelvic cavities will be opened and the organs examined. The number and location of former implantation sites and viable fetuses will be recorded. Corpora lutea will also be counted and recorded. Gross lesions will be preserved in 10% neutral-buffered formalin for possible future histopathologic examinations. Carcasses from adult animals will be discarded. Viable fetuses or pups will be euthanized by a subcutaneous (scapular region) or intraperitoneal injection of sodium pentobarbital (as appropriate).

Recognizable fetuses or pups will be examined externally and preserved in 10% neutral-buffered formalin for possible future analysis. Recognizable fetuses or pups aborted on GD 20 will be examined according to Section 8.8.3, if possible. Maternal tissues will be collected and preserved as described in Section 8.8.2.1 and organ weights will be collected as described in Section 8.8.2.2.

8.8 Scheduled Necropsy – Gestation Day 20:

8.8.1 Laparohysterectomy and Macroscopic Examination:

Laparohysterectomy and macroscopic examinations will be performed blind to treatment group. All surviving rats will be euthanized by carbon dioxide inhalation on gestation day 20. The thoracic, abdominal and pelvic cavities will be opened and the organs examined. The skin will be collected and the liver, brain and thymus weighed and collected as described in Section 8.8.2. The uterus of each dam will be excised and its adnexa trimmed. Corpora lutea will be counted and recorded. Gravid uterine weights will be obtained and recorded. The uterus of each dam will be opened and the number of viable and nonviable fetuses, early and late resorptions and total number of implantation sites will be recorded, and the placentae will be examined. The individual uterine distribution will be documented using the following procedure: all implantation sites, including early and late resorptions, will be numbered in consecutive fashion beginning with the left distal uterine horn, noting the position of the cervix and continuing from the proximal to the distal right uterine horn. Uteri which appear nongravid by macroscopic examination will be opened and placed in a 10% ammonium sulfide solution as described by Salewski (Salewski, 1964) for detection of early implantation loss. Maternal tissues listed in section 8.8.2.1 will be preserved for future histopathologic examination 10% neutral-buffered formalin. Representative sections corresponding organs from a sufficient number of controls will be retained for comparison, if possible. The carcasses will be discarded.

8.8.2 Anatomic Pathology:

8.8.2.1 Macroscopic Examination:

At the time of necropsy, the following maternal tissues and organs will be collected and placed in 10% neutral-buffered formalin for possible future analysis:

Skin from the site of dose administration

Liver

Brain

Thymus

All gross lesions^a

a Representative sections of corresponding organs from a sufficient number of controls will be retained for comparison, if possible.

8.8.2.2 Organ Weights:

The following organs will be weighed from all animals euthanized at scheduled termination, *in extremis* or delivered prematurely. Organ-to-brain-weight ratios will be calculated.

Liver Brain Thymus gland

8.8.3 Fetal Examination:

Fetal examinations will be conducted without knowledge of treatment group. External, internal and skeletal fetal findings will be recorded as developmental variations or malformations. Representative photographs of all malformations, as appropriate, will be included in the study records. Corresponding low magnification photographs, depicting both the malformed fetus and a comparison control fetus, or normal littermate, will also be included in the study records as needed and as appropriate for comparison, when possible. Prenatal data (viable and nonviable fetuses, early and late resorptions, pre- and post-implantation loss and the fetal sex distribution) will be presented on a group mean basis and additionally as proportional data (% per litter).

8.8.3.1 External:

Each viable fetus will be examined in detail, sexed, weighed, euthanized by a subcutaneous injection of sodium pentobarbital in the scapular region and tagged. Nonviable fetuses (the degree of autolysis is minimal or absent) will be examined, crown-rump length measured, weighed, sexed and tagged individually. The crown-rump length of late resorptions (advanced degree of autolysis) will be measured, the degree of autolysis recorded, a gross external examination performed (if possible) and the tissue will be discarded.

8.8.3.2 Visceral (Internal):

Fetuses will be examined for visceral anomalies by dissection in the fresh (non-fixed) state. The thoracic and abdominal cavities will be opened and dissected using a technique described by Stuckhardt and Poppe (1984). Fetal kidneys will be examined and graded for renal papillae development (Woo and Hoar, 1972). This examination will include the heart and major vessels. The sex of all fetuses will be confirmed by internal examination.

The heads will be removed from approximately one-half of the fetuses in each litter and placed in Bouin's solution for subsequent processing and soft-tissue examination using the Wilson sectioning technique (Wilson, 1965).

The heads from the remaining one-half of the fetuses in each litter will be examined by a mid-coronal slice.

All carcasses, including the carcasses without heads, will be eviscerated, skinned and fixed in 100% ethyl alcohol for subsequent examination of skeletons.

8.8.3.3 Skeletal:

Each eviscerated fetus, following fixation in alcohol, will be stained with Alizarin Red S and Alcian Blue by a method similar to that described by Dawson (1926) and Inouye (1976). The skeletal examination will be made following this procedure.

9 DURATION OF STUDY:

The quarantine, breeding and gestation phases of the study will require approximately two months. The laparohysterectomy phase of the study and processing and evaluation of the fetal specimens will require approximately four weeks.

10 STATISTICAL METHODS:

All analyses will be two-tailed for significance levels of 5% and 1%. All statistical tests will be performed using a computer with appropriate programming as referenced below. Data from nongravid females will be excluded from calculation of means and from comparative statistics. The litter, rather than the fetus, will be considered as the experimental unit.

10.1 Maternal In-Life Data:

Continuous data variables [mean body weights (absolute and net), body weight gains (absolute and net) and food consumption of each interval] will be subjected to a parametric one-way analysis of variance (ANOVA) (Snedecor and Cochran, 1980) to determine intergroup difference. If the results of the ANOVA are significant (p<0.05), Dunnett's test (Dunnett, 1964) will be applied to the data.

10.2 Laparohysterectomy Data:

The group mean numbers of corpora lutea, implantation sites, viable fetuses, maternal gravid uterine weights and mean fetal weight (separately by sex, and combined) will be subjected to a parametric one-way analysis of variance (ANOVA) (Snedecor and Cochran, 1980) and Dunnett's test (1964) as described above. The mean litter proportions of prenatal data (% per litter of viable and nonviable fetuses, early and late resorptions, total resorptions, pre- and post_implantation loss and the fetal sex distribution) will be subjected to the Kruskal-Wallis nonparametric ANOVA test (Kruskal and Wallis, 1952) to determine intergroup difference. If the results of the ANOVA are significant (p<0.05), the Dunn's Test (Dunn, 1964) will be applied to the data.

10.3 Fetal Morphology Data:

The mean litter proportion (% per litter) of total fetal malformations and developmental variations (external, visceral, skeletal and combined) and of each particular external, visceral and skeletal malformation or variation will be tabulated. The mean litter proportions of fetal malformations and developmental variations will be subjected to the Kruskal-Wallis nonparametric ANOVA test (1952) followed by the Dunn's Test (1964) (if appropriate) as described above

11 QUALITY ASSURANCE:

The study will be audited by the WIL Quality Assurance Department while in progress to assure compliance with Good Laboratory Practice Regulations, adherence to the protocol and to WIL Standard Operating Procedures. The protocol, protocol amendments, raw data, draft report and final report will be audited by the WIL Quality Assurance Department prior to submission to the Sponsor to assure that the final report accurately describes the conduct and the findings of the study. This study will be conducted in compliance with the EPA/TSCA and OECD [C(97) 186/Final] Principles of Good Laboratory Practice.

This study will be included on the WIL master list of regulated studies.

12 RECORDS TO BE MAINTAINED:

All original raw data records, as defined by WIL SOPs and the applicable GLPs, will be stored as described in Section 13 in the Archives at WIL Research Laboratories, LLC.

13 WORK PRODUCT:

The Sponsor will have title to all documentation records, raw data, specimens and other work product generated during the performance of the study. Any remaining samples (e.g. formulation or blood/plasma/serum) will be discarded after issuance of the Final Report. All work product, including raw paper data, pertinent electronic storage media and specimens, will be retained at no charge for six months following issuance of the final report in the Archives at WIL Research Laboratories, LLC. Thereafter, WIL Research Laboratories, LLC will charge a monthly archiving fee for retention of all work product. All work product will be stored in compliance with regulatory requirements.

Any work product, including documents, specimens, and samples, that are required by this protocol, its amendments, or other written instructions of the Sponsor, to be shipped by WIL Research Laboratories, LLC to another location will be appropriately packaged and labeled as defined by WIL's SOPs and delivered to a common carrier for shipment. WIL Research Laboratories, LLC will not be responsible for shipment following delivery to the common carrier.

All work product generated at a performing laboratory will be retained at an appropriate archive facility as designated by the SOPs of the performing laboratory.

14 REPORTS:

The final report will contain a summary, test article information, methods and procedures, appropriate individual animal and summary data tables, WIL Historical Control Data, supporting sub-reports (e.g. analytical chemistry report etc.), a copy of the protocol and amendment(s), if any, and an interpretation and discussion of the study results. The final report will be comprehensive and shall define level(s) inducing toxic effects as well as no-effect level(s) under the conditions of this investigation. The report will contain all information necessary to conform with current EPA OCSPP and OECD specifications.

WIL Research Laboratories, LLC will submit an electronic copy (PDF and MS Word copy of the report text for editing and comments) of the audited draft report in a timely manner upon completion of data collection prior to issuance of the final report. It is expected that the Sponsor will review the draft report and provide comments to WIL Research Laboratories, LLC within a two-month time frame following submission. WIL Research Laboratories, LLC shall provide a revised draft report that

incorporates the Sponsor's reasonable revisions and suggestions. One revision will be permitted as part of the cost of the study; additional changes or revisions may be made, at extra cost. WIL Research Laboratories, LLC shall submit the final report within two weeks of receiving authorization to finalize the report from the Sponsor. If the Sponsor's comments and/or authorization to finalize the report have not been received at WIL Research Laboratories, LLC within one year following submission of the draft report, WIL Research Laboratories, LLC may elect to finalize the report following appropriate written notification to the Sponsor. Two electronic copies (PDF) of the final report on CD-R will be provided; requests for paper copies of the final report may result in additional charges.

15 ANIMAL WELFARE ACT COMPLIANCE:

This study will comply with all applicable sections of the Final Rules of the Animal Welfare Act (AWA) regulations (9 CFR Parts 1, 2 and 3). The Sponsor should make particular note of the following:

- The Sponsor Representative's signature on this protocol documents for the Study Director the Sponsor's assurance that the study described in this protocol does not unnecessarily duplicate previous experiments.
- Whenever possible, procedures used in this study have been designed to avoid or minimize discomfort, distress or pain to animals. All methods are described in this study protocol or in written laboratory Standard Operating Procedures.
- Animals that experience severe or chronic pain or distress that cannot be relieved
 will be painlessly euthanized as deemed appropriate by the veterinary staff and
 Study Director. The Sponsor will be advised by the Study Director of all
 circumstances which could lead to this action in as timely a manner as possible.
- Methods of euthanasia used during this study are in conformance with the above-referenced regulation.
- The Sponsor/Study Director has considered alternatives to procedures that may
 cause more than momentary or slight pain or distress to the animals and has
 provided a written narrative description (AWA covered species only) of the methods
 and sources used to determine that alternatives are not available.

16 PROTOCOL MODIFICATION:

Modification of the protocol may be accomplished during the course of this investigation. However, no changes will be made in the study design without the verbal or written permission of the Sponsor. In the event that the Sponsor verbally requests or approves a change in the protocol, such changes will be made by appropriate documentation in the form of a protocol amendment. All alterations of

the protocol and reasons for the modification(s) will be signed by the Study Director and the Sponsor Representative.

17 REFERENCES:

Dawson, A.B. A note on the staining of the skeleton of cleared specimens with Alizarin Red S. Stain Technology 1926, 1, 123-124.

Dunn, O.J. Multiple comparisons using rank sums. Technometrics 1964, 6(3), 241-252.

Dunnett, C.W. New tables for multiple comparisons with a control. *Biometrics* **1964**, 20, pp. 482-491.

Haubenstricker, M.E. Analytical Validation and Stability Study of Catalytically Cracked Slurry Oil in Acetone Formulations (Study No. WIL-402029), WIL Research Laboratories, LLC, Ashland, OH, Draft.

Inouye, M. Differential staining of cartilage and bone in fetal mouse-skeleton by Alcian blue and Alizarin red S. *Congenital Anomalies* **1976**, *16*, 171-173.

Kruskal, W.H.; Wallis, W.A. Use of ranks in one-criterion variance analysis. *Journal of the American Statistical Association* 1952, 47, 583-621.

Salewski, E. Färbemethode zum makroskopischen Nachweis von Implantationsstellen am Uterus der Ratte. [Staining method for a macroscopic test for implantation sites in the uterus of the rat]. Naunyn - Schmiedebergs Archiv für Experimentelle Pathologie und Pharmakologie 1964, 247, 367.

Snedecor, G.W.; Cochran, W.G. One Way Classifications; Analysis of Variance. In *Statistical Methods*, 7th ed.; The Iowa State University Press: Ames, IA, **1980**; pp. 215-237.

Stuckhardt, J.L.; Poppe, S.M. Fresh visceral examination of rat and rabbit fetuses used in teratogenicity testing. *Teratogenesis, Carcinogenesis and Mutagenesis* **1984**, *4*, 181-188.

Wilson, J.G. Embryological Considerations in Teratology. In *Teratology: Principles and Techniques*; Wilson, J.G. and Warkany, J., Eds.; The University of Chicago Press: Chicago, IL, **1965**; pp. 251-277.

Woo, D.C.; Hoar, R.M. Apparent hydronephrosis as a normal aspect of renal development in late gestation of rats: the effect of methyl salicylate. *Teratology* **1972**; *6*, 191-196.

	TOCOL		

Sponsor approval received via on 3/Aug 25/1

Date

American Petroleum Institute

Russell White

Sponsor Representative

WIL Research Laboratories, LLC

Jeffrey H. Charlap, MS Study Director 31Avg 2011 Date

M. Loca J.B. (c.k.)

Donald G. Stump, PhD, DABT

Senior Director, Developmental and

Reproductive Toxicology

3/ aug a

APPENDIX B

Test Substance Characterization (Sponsor-Provided Data)

Report of Analysis

Sample ID:2009-DRPK-000651-023 Drawn By:Client

Sample Designated As:Crude Oil

ASTM D7169

Representing:Site#12 Sx.#2 (As Received)

Date Taken:16-January-2009

Date Submitted:16-January-2009

Date Tested:21-January-2009

Units

Result

Method Test

Boiling Point Distribution of Samples with Residues by High Temperature GC

Boiling Point Distribution See Attached Report

Simdist-2000 ITS Caleb Brett - Houston

SAMPLE:	09-0651-23 (Site #12 Sx. #2)	Injection Date:	0090120084535-0600
	Same provided in the contract of the contract	Report Date:	1/21/09 8:47
FILE:	C:\CP32 Instruments\Dual Hi-Temp\Data\2009\JAN-09\09-0651-23.0013.CDF		
PROCEDURE	C:\CP32 Instruments\Dual Hi-Temp\Procedures\1-7-09-FRONT-HT.prc		
EXCEL FILE:	C:\CP32 Instruments\Dual Hi-Temp\Reports\2009\JAN-09\09-0651-23_0013_CDF.xls		

Boiling Point Distribution Report

Simulated Distillation

%Off	BP °F	BP °C	%Off	BP °F	BP °C	%Off	BP °F	BP ℃
IBP	341.5	171.9	40%	728.4	386.9	80%	857.4	458.6
1%	429.7	221.0	41%	730.6	388.1	81%	862.6	461.5
2%	502.3	261.3	42%	732.5	389.2	82%	868.0	464.4
3%	541.7	283.2	43%	734.6	390.3	83%	874.5	468.1
4%	563.7	295.4	44%	736.9	391.6	84%	881.7	472.1
5%	580.9	304.9	45%	739.6	393.1	85%	889.5	476.4
6%	589.8	309.9	46%	742.4	394.7	86%	898.2	481.2
7%	602.7	317.1	47%	745.4	396.3	87%	906.4	485.8
8%	610.5	321.4	48%	748.3	397.9	88%	915.6	490.9
9%	617.2	325.1	49%	751.1	399.5	89%	926.5	496.9
10%	621.2	327.3	50%	753.9	401.0	90%	941.4	505.2
11%	628.0	331.1	51%	756.8	402.7	91%	958.1	514.5
12%	634.2	334.6	52%	759.8	404.3	92%	978.5	525.8
13%	640.1	337.8	53%	762.5	405.8	93%	1003.6	539.8
14%	645.4	340.8	54%	765.2	407.4	94%	1035.0	557.2
15%	649.7	343.2	55%	768.0	408.9	95%	1065.7	574.3
16%	653.9	345.5	56%	770.7	410.4	96%	1099.3	593.0
17%	659.7	348.7	57%	773.6	412.0	97%	1138.3	614.6
18%	663.9	351.1	58%	776.2	413.4	98%	1188.7	642.6
19%	668.1	353.4	59%	778.9	414.9	99%	1277.3	691.8
20%	671.7	355.4	60%	781.5	416.4	FBP	1359.0	737.2
21%	676.0	357.8	61%	784.2	417.9			
22%	681.3	360.7	62%	786.8	419.3			
23%	687.5	364.1	63%	789.3	420.7			
24%	692.7	367.0	64%	792.0	422.2			
25%	696.4	369.1	65%	795.0	423.9			
26%	698.5	370.3	66%	798.1	425.6			
27%	700.3	371.3	67%	801.2	427.3			
28%	702.1	372.3	68%	804.2	429.0			
29%	703.9	373.3	69%	807.3	430.7			
30%	705.8	374.3	70%	811.3	432.9			
31%	708.0	375.6	71%	815.7	435.4			
32%	710.8	377.1	72%	819.8	437.6			
33%	713.7	378.7	73%	824.2	440.1			
34%	716.1	380.1	74%	828.6	442.5			
35%	718.4	381.3	75%	833.6	445.3		10	
36%	720.5	382.5	76%	838.6	448.1			
37%	722.5	383.6	77%	843.1	450.6			
38%	724.4	384.7	78%	847.5	453.1			
39%	726.2	385.7	79%	852.3	455.7			

Start Elution Time (mins):	0.05	Sample Wt:	0.1192 g	
End Elution Time (mins):	54.424	Solvent Wt:	7.6937 g	
8 82 85		Material Balance:	100.0 wt%	

Blank File: C:\CP32 Instruments\Dual Hi-Temp\Data\2009\JAN-09\BLANK4(1).0017.CDF Calib File: D:\CP32 Instruments\DUAL HI-TEMP\DATA\2-20-06\RTMIX1Z-BACK.0014.CDF
Resp Factor: 1.000E+00

Envantage, Inc. Simdist-2000

Version 1.0808 Copyright 2008

CHARACTERIZATION AND QUANTITATION OF POLYNUCLEAR AROMATIC COMPOUNDS (PAC) IN HPV KEROSENE, GAS OIL, HEAVY FUEL OIL AND HYDROCARBON WASTE SAMPLES BY PRR ("MOBIL" METHOD 2) PAC

STUDY NO.:

2009-0102

MATERIALS TESTED:

46 assorted HPV oils

CRU SAMPLE NOs.:

010901 - 010949

REQUESTER:

American Petroleum Institute

1220 L Street, NW

Washington, DC 2005-4070

LIAISON:

T. A. Roy

STUDY PERFORMED BY:

Port Royal Research, LLC 61 S. Port Royal Drive

Hilton Head, SC 29928

EXPERIMENTAL START DATE:

January 9, 2009

EXPERIMENTAL TERMINATION DATE:

February 10, 2009

T.A. Roy Date Study Director

DISTRIBUTION

Study Director API Liaison (original) T.A. Roy P. Podhasky

TABLE OF CONTENTS

		Page
Signatures		i
Results (Tables I a	nd II)	1
Discussion		6
Appendix		
	Correspondence	
	Sample Description and Identification Sheets	
	PRR Test Article Receipt Log	
	Study Worksheets PRR ("Mobil" Method 2) PAC	
	6-PAC Standard Response/Correction Factor Determ Standard Chromatograms	inations &
	Test Material GC/MS Chromatograms (Group Assignm	nents)

RESULTS

PRR ("MOBIL" METHOD 2) PAC

The polynuclear aromatics (PAC) were isolated by following PRR Standard Operating Procedure No. A.3.1. The total weight percent PAC and the group percentages of the total Wt.% are as follows:

TABLE I

source/chemical abstract no.	sample identification	total Wt.%	Group Percentages of total Wt. %							
•			1	11	III	IV	V	VI	≥VII	
SITE 13, SAMPLE 2, CAS# 64742-81-0	KEROSENE	1.90	20	80	0	0	0	0	0	
SITE 26, SAMPLE 21, CAS# 8008-20-6	KEROSENE	1.93	30	70	0	0	0	0	0	
SITE 9, SAMPLE 8, CAS# 64742-81-0	KEROSENE	2.23	30	70	0	0	0	0	0	
SITE 25, SAMPLE 7, CAS# 64742-81-0	KEROSENE	3.38	30	70	0	0	0	0	0	
SITE 28, SAMPLE 7, CAS# 64742-81-0	KEROSENE	2.04	30	70	1	0	0	0	0	
SITE 26, SAMPLE 18, CAS# 64741-59-9	GAS OILS	32.50	10	60	30	0	0	0	0	
SITE 7, SAMPLE 2, CAS# 64741-82-8	GAS OILS	0.18	20	50	30	1	0	0	0	
SITE 26, SAMPLE 12, CAS# 64741-82-8	GAS OILS	1.38	50	50	4	0	0	0	0	
SITE 22, SAMPLE 1, CAS# 64742-80-9	GAS OILS	5.09	10	70	10	0	0	0	0	
SITE 3, SAMPLE 2, CAS# 64742-80-9	GAS OILS	3.38	1	70	30	0	0	0	0	
SITE 26, SAMPLE 2, CAS# 64742-80-9	GAS OILS	4.38	8	70	20	0	0	0	0	
SITE 28, SAMPLE 2, CAS# 64741-59-9	GAS OILS	39.80	1	70	20	0	0	0	0	
SITE 17, SAMPLE 5, CAS# 64741-59-9	GAS OILS	23.90	10	70	20	0	0	0	0	
SITE 5, SAMPLE 1, CAS# 64741-59-9	GAS OILS	38.20	0	90	10	0	0	0	0	
SITE 1, SAMPLE 7, CAS# 64741-59-9	GAS OILS	31.50	0	70	30	0	0	0	0	
SITE 28, SAMPLE 8, CAS# 64742-80-9	GAS OILS	2.52	6	80	20	0	0	0	0	
SITE 12, SAMPLE 18, CAS# 64742-80-9	GAS OILS	7.39	3	50	50	0	0	0	0	

TABLE 1 (CONTINUED)

source/chemical abstract no.	sample identification	total Wt.%	1	Gre	oup Perce	entages o	f total W	t. %	
			I	II	101	IV	V	VI	≥VII
SITE 12, SAMPLE 5, CAS# 64741-82-8	GAS OILS	9.82	5	80	10	0	0	0	0
SITE 2, SAMPLE 7, CAS# 64741-82-8	GAS OILS	12.00	30	40	30	0	0	0	0
SITE 9, SAMPLE 4, CAS# 64741-82-8	GAS OILS	7.91	4	50	40	2	0	0	0
SITE 29, SAMPLE 1, CAS# 68333-23-3	INDIVIDUAL	0.38	20	70	9	0	0	0	0
SITE 9, SAMPLE 3, CAS# 64741-81-7	HEAVY FUEL OILS	11.30	0	6	20	30	20	10	2
SITE 6, SAMPLE 3, CAS# 64741-62-4	HEAVY FUEL OILS	44.40	0	2	70	20	5	4	0
SITE 1, SAMPLE 4, CAS# 64741-62-4	HEAVY FUEL OILS	30.50	0	2	60	30	7	3	0
SITE 2, SAMPLE 6, CAS# 64741-81-7	HEAVY FUEL OILS	10.00	0	10	40	20	10	9	3
SITE 8, SAMPLE 1, CAS# 64741-81-7	HEAVY FUEL OILS	16.50	0	3	40	30	20	8	2
SITE 30, SAMPLE 3, CAS# 64741-62-4	HEAVY FUEL OILS	43.20	0	3	30	30	20	10	4
SITE 17, SAMPLE 10, CAS# 64741-62-4	HEAVY FUEL OILS	31.00	0	1	20	40	20	10	5
SITE 30, SAMPLE 2, CAS# 64741-81-7	HEAVY FUEL OILS	18.40	0	3	20	30	20	20	10
SITE 12, SAMPLE 2, CAS# 64741-62-4	HEAVY FUEL OILS	52.00	0	2	30	30	20	10	5
SITE 21, SAMPLE 2, CAS# 68477-26-9	HYDROCARBON WASTES	1.80	2	80	20	0	0	0	0
SITE 28, SAMPLE 5, CAS# 68477-26-9	HYDROCARBON WASTES	4.11	30	70	5	0	0	0	0
SITE 1, SAMPLE 10, CAS# 68477-26-9	HYDROCARBON WASTES	15.70	10	60	20	2	0	0	0
SITE 2, SAMPLE 4, CAS# 68477-26-9	HYDROCARBON WASTES	12.70	5	70	30	2	0	0	0
SITE 16, SAMPLE 7, CAS# 68477-26-9	HYDROCARBON WASTES	5.21	3	50	20	10	7	5	0
SITE 26, SAMPLE 10, CAS# 68477-26-9	HYDROCARBON WASTES	0.33	0	30	60	9	5	2	0
SITE 21, SAMPLE 3, CAS# 68956-70-7	HYDROCARBON WASTES	0.35	0	50	40	5	2	0	0
SITE 4, SAMPLE 2, CAS# 68477-26-9	HYDROCARBON WASTES	1.74	4	50	30	8	5	0	0
SITE 10, SAMPLE 2, CAS# 68956-48-9	HYDROCARBON WASTES	2.60	3	80	20	0	0	0	0
SITE 2, SAMPLE 3, CAS# 68477-26-9	HYDROCARBON WASTES	16.40	10	40	30	10	7	8	0
SITE 10 SAMPLE 1, CAS# 68477-26-9	HYDROCARBON WASTES	2.01	7	70	20	0	0	0	0
SITE 2, SAMPLE 2, CAS# 68477-26-9	HYDROCARBON WASTES	15.90	10	50	20	6	5	6	0

TABLE 1 CONTINUED

source/chemical abstract no.	sample identification	total Wt.%	Group Percentages of total Wt. %							
			1	II	III	IV	V	VI	≥VII	
SITE 23, SAMPLE 17, CAS# 68956-70-7	HYDROCARBON WASTES	2.83	0	10	20	10	20	20	20	
SITE 5, SAMPLE 3, CAS# 68956-48-9	HYDROCARBON WASTES	9.66	0	50	40	5	2	0	0	
SITE 26, SAMPLE 16, CAS# 68956-70-7	HYDROCARBON WASTES	3.46	0	10	70	10	3	2	0_	

Percentages are reported to one significant figure where groups I through VII represent benzenes and two-

Table II below reports these same results as the weight percent of the total in each ring group:

TABLE II

source/chemical abstract no.	sample identification	total Wt.%			G	roup Wt	%		
			1	п	111	IV	v	VI	≥VII
SITE 13, SAMPLE 2, CAS# 64742-81-0	KEROSENE	1.90	0.38	1.52	0.00	0.00	0.00	0.00	0.00
SITE 26, SAMPLE 21, CAS# 8008-20-6	KEROSENE	1.93	0,58	1.35	0.00	0.00	0.00	0.00	0.00
SITE 9, SAMPLE 8, CAS# 64742-81-0	KEROSENE	2.23	0.67	1.56	0.00	0.00	0.00	0.00	0.00
SITE 25, SAMPLE 7, CAS# 64742-81-0	KEROSENE	3.38	1.01	2.37	0.00	0.00	0.00	0.00	0.00
SITE 28, SAMPLE 7, CAS# 64742-81-0	KEROSENE	2.04	0.61	1.43	0.02	0.00	0.00	0.00	0.00
SITE 26, SAMPLE 18, CAS# 64741-59-9	GAS OILS	32.50	3.25	19.50	9.75	0.00	0.00	0.00	0.00
SITE 7, SAMPLE 2, CAS# 64741-82-8	GAS OILS	0.18	0.04	0.09	0.05	0.00	0.00	0.00	0.00
SITE 26, SAMPLE 12, CAS# 64741-82-8	GAS OILS	1.38	0.69	0.69	0.06	0.00	0.00	0.00	0.00
SITE 22, SAMPLE 1, CAS# 64742-80-9	GAS OILS	5.09	0.51	3.56	0.51	0.00	0.00	0.00	0.00
SITE 3, SAMPLE 2, CAS# 64742-80-9	GAS OILS	3.38	0.03	2.37	1.01	0.00	0.00	0.00	0.00

PORT ROYAL RESEARCH STUDY NO. 2009-0102

TABLE II (CONTINUED)

source/chemical abstract no.	sample identification	total Wt.%			G	roup Wt9	%		
			1	II	III	IV	٧	VI	≥VII
SITE 26, SAMPLE 2, CAS# 64742-80-9	GAS OILS	4.38	0.35	3.07	0.88	0.00	0.00	0.00	0.00
SITE 28, SAMPLE 2, CAS# 64741-59-9	GAS OILS	39.80	0.40	27.86	7.96	0.00	0.00	0.00	0.00
SITE 17, SAMPLE 5, CAS# 64741-59-9	GAS OILS	23.90	2.39	16.73	4.78	0.00	0.00	0.00	0.00
SITE 5, SAMPLE 1, CAS# 64741-59-9	GAS OILS	38.20	0.00	34.38	3.82	0.00	0.00	0.00	0.00
SITE 1, SAMPLE 7, CAS# 64741-59-9	GAS OILS	31.50	0.00	22.05	9.45	0.00	0.00	0.00	0.00
SITE 28, SAMPLE 8, CAS# 64742-80-9	GAS OILS	2.52	0.15	2.02	0.50	0.00	0.00	0.00	0.00
SITE 12, SAMPLE 18, CAS# 64742-80-9	GAS OILS	7.39	0.22	3.70	3.70	0.00	0.00	0.00	0.00
SITE 12, SAMPLE 5, CAS# 64741-82-8	GAS OILS	9.82	0.49	7.86	0.98	0.00	0.00	0.00	0.00
SITE 2, SAMPLE 7, CAS# 64741-82-8	GAS OILS	12.00	3.60	4.80	3.60	0.00	0.00	0.00	0.00
SITE 9, SAMPLE 4, CAS# 64741-82-8	GAS OILS	7.91	0.32	3.96	3.16	0.16	0.00	0.00	0.00
SITE 29, SAMPLE 1, CAS# 68333-23-3	INDIVIDUAL	0.38	0.08	0.27	0.03	0.00	0.00	0.00	0.00
SITE 9, SAMPLE 3, CAS# 64741-81-7	HEAVY FUEL OILS	11.30	0.00	0.68	2.26	3.39	2.26	1.13	0.23
SITE 6, SAMPLE 3, CAS# 64741-62-4	HEAVY FUEL OILS	44.40	0.00	0.89	31.08	8.88	2.22	1.78	0.00
SITE 1, SAMPLE 4, CAS# 64741-62-4	HEAVY FUEL OILS	30.50	0.00	0.61	18.30	9.15	2.14	0.92	0.00
SITE 2, SAMPLE 6, CAS# 64741-81-7	HEAVY FUEL OILS	10.00	0.00	1.00	4.00	2.00	1.00	0.90	0.30
SITE 8, SAMPLE 1, CAS# 64741-81-7	HEAVY FUEL OILS	16.50	0.00	0.50	6.60	4.95	3.30	1.32	0.33
SITE 30, SAMPLE 3, CAS# 64741-62-4	HEAVY FUEL OILS	43.20	0.00	1.30	12.96	12.96	8.64	4.32	1.73
SITE 17, SAMPLE 10, CAS# 64741-62-4	HEAVY FUEL OILS	31.00	0.00	0.31	6.20	12.40	6.20	3.10	1.55
SITE 30, SAMPLE 2, CAS# 64741-81-7	HEAVY FUEL OILS	18.40	0.00	0.55	3.68	5.52	3.68	3.68	1.84
SITE 12, SAMPLE 2, CAS# 64741-62-4	HEAVY FUEL OILS	52.00	0.00	1.04	15.60	15.60	10.40	5.20	2.60
SITE 21, SAMPLE 2, CAS# 68477-26-9	HYDROCARBON WASTES	1.80	0.04	1.44	0.36	0.00	0.00	0.00	0.00
SITE 28, SAMPLE 5, CAS# 68477-26-9	HYDROCARBON WASTES	4.11	1.23	2.88	0.21	0.00	0.00	0.00	0.00
SITE 1, SAMPLE 10, CAS# 68477-26-9	HYDROCARBON WASTES	15.70	1.57	9.42	3.14	0.31	0.00	0.00	0.00
SITE 2, SAMPLE 4, CAS# 68477-26-9	HYDROCARBON WASTES	12.70	0.64	8.89	3.81	0.25	0.00	0.00	0.00
SITE 16, SAMPLE 7, CAS# 68477-26-9	HYDROCARBON WASTES	5.21	0.16	2.61	1.04	0.52	0.36	0.26	0.00
SITE 26, SAMPLE 10, CAS# 68477-26-9	HYDROCARBON WASTES	0.33	0.00	0.10	0.20	0.03	0.02	0.01	0.00

source/chemical abstract no.	sample identification	total Wt.%	Group Wt%							
			Ī	- 11	III	IV	V	VI	≥VII	
SITE 21, SAMPLE 3, CAS# 68956-70-7	HYDROCARBON WASTES	0.35	0.00	0.18	0.14	0.02	0.01	0.00	0.00	
SITE 4, SAMPLE 2, CAS# 68477-26-9	HYDROCARBON WASTES	1.74	0.07	0.87	0.52	0.14	0.09	0.00	0.00	
SITE 10, SAMPLE 2, CAS# 68956-48-9	HYDROCARBON WASTES	2.60	0.08	2.08	0.52	0.00	0.00	0.00	0.00	
SITE 2, SAMPLE 3, CAS# 68477-26-9	HYDROCARBON WASTES	16.40	1.64	6.56	4.92	1.64	1.15	1.31	0.00	
SITE 10 SAMPLE 1, CAS# 68477-26-9	HYDROCARBON WASTES	2.01	0.14	1.41	0.40	0.00	0.00	0.00	0.00	
SITE 2, SAMPLE 2, CAS# 68477-26-9	HYDROCARBON WASTES	15.90	1.59	7.95	3.18	0.95	0.80	0.95	0.00	
SITE 2, SAMPLE 1, CAS# 68477-26-9	HYDROCARBON WASTES	16.20	3.24	6.48	3.24	1.46	1.13	0.97	0.00	
SITE 23, SAMPLE 17, CAS# 68956-70-7	HYDROCARBON WASTES	2.83	0.00	0.28	0.57	0.28	0.57	0.57	0.57	
SITE 5, SAMPLE 3, CAS# 68956-48-9	HYDROCARBON WASTES	9.66	0.00	4.83	3.86	0.48	0.19	0.00	0.00	
SITE 26, SAMPLE 16, CAS# 68956-70-7	HYDROCARBON WASTES	3.46	0.00	0.35	2.42	0.35	0.10	0.07	0.00	

DISCUSSION

Four of the samples were analyzed in duplicate, one each from the four categories of streams, kerosene, gas oil, heavy fuel oil and hydrocarbon waste. The relative percent difference (%RPD)¹ for the duplicate values were 22.5, 6.0, 3.6 and 6.8% for the four categories, respectively. Generally, RPD values ≤20% are considered to be within precision standards. The kerosene value is outside this limit and likely reflects the variable loss of volatile components from this stream which is outside the designed scope and limitation of the PAC2 assay.

 $^{^{1}}$ RPD = (R1 - R2)/[(R1 + R2)/2] X 100 where R1 and R2 are replicates 1 and 2.

APPENDIX C

Analyses of Dosing Formulations (WIL Research Laboratories, LLC)

A Dermal Prenatal Developmental Toxicity Study of Clarified Oils, Catalytic Cracked in Rats

Analyses of Dosing Formulations

Analytical Chemistry Department

WIL Research Laboratories, LLC

TABLE OF CONTENTS

		<u>Page</u>
	Table of Contents	2
	Index of Figures	3
	Index of Tables	3
1.	Summary	4
2.	Introduction	4
2.1.	Key Study Dates	5
2.2.	WIL Research Key Study Personnel	5
3.	Experimental Procedures - Materials and Methods	6
3.1.	Test Substance Identification	6
3.2.	Gas Chromatography	6
3.3.	Preparation of Calibration Stock Solution	7
3.4.	Preparation of Calibration Standards	7
3.5.	Preparation of the Quality Control Stock Solution	7
3.6.	Preparation and Processing of Quality Control Samples	7
3.7.	Formulation Sample Processing	8
3.8.	Calibration and Quantitation	8
4.	Results and Discussion	9
4.1.	Specificity/Selectivity	12
4.2.	Assay Acceptability	12
4.3.	Test Substance Stability in Calibration Standards	12
4.4.	Test Substance Stability In Processed Samples	12
4.5.	Test Substance Homogeneity and Concentration Assessment of Formulations	
5.	Conclusions	14
6.	Report Review and Approval	15
7.	References	16
Q	Abbraviations	17

INDEX OF FIGURES

	<u>Page</u>
1.	Representative Chromatogram of a 500 µg CAS# 64741-62-4/mL Calibration Standard
2.	Representative Chromatogram of a Processed 100 mg CAS# 64741-62-4/mL Quality Control Sample
3.	Representative Chromatogram of a Processed 16.7 mg CAS# 64741-62-4/mL Formulation Sample
4.	Chromatogram of a Processed Control Group Formulation Sample11
	INDEX OF TABLES
1.	5-Day Room Temperature Stability Analysis of the Calibration Samples
2.	5-Day Room Temperature Stability Analysis of the Quality Control Samples
3.	Homogeneity/Concentration Assessment of the 12 September 2011 Formulations
4.	Homogeneity/Concentration Assessment of the 30 September 2011 Formulations

1. SUMMARY

A gas chromatography method using flame ionization detection for the determination of clarified oils, catalytic cracked (CAS# 64741-62-4) concentration in acetone formulations and test substance ranging in concentration from 1.00 to 100 mg/mL was validated in a previous study (Haubenstricker, 2011, WIL-402029). In the present study, test substance stability was assessed in calibration standards and processed quality control (QC) samples stored at room temperature for 5 days. Also in this study, dosing formulations prepared at target concentrations of 3.3, 16.7, and 33.3 mg CAS# 64741-62-4/mL were analyzed to assess test substance homogeneity and concentration acceptability.

The test substance in calibration standards and processed QC samples stored at room temperature for 5 days met the WIL Research SOP acceptance criteria for stability, i.e., the post-storage concentration was not <90% of the pre-storage value.

The results of the test substance homogeneity and concentration acceptability assessment in formulations prepared at target concentrations of 3.3, 16.7, and 33.3 mg CAS# 64741-62-4/mL met the WIL Research SOP acceptance criteria, *i.e.*, the relative standard deviation (RSD) for the mean concentration was $\leq 10\%$ at a concentration within the acceptable limits (85% to 115% of target). No test substance was detected in the analyzed vehicle administered to the control group.

2. Introduction

This report provides a detailed description of a validated gas chromatography (GC) method using flame ionization detection (FID) for the determination of CAS# 64741-62-4 concentration in acetone formulations and test substance ranging in concentration from 1.00 to 100 mg/mL. The method was validated in a previous study (Haubenstricker, 2011, WIL-402029) where assay specificity/selectivity, ruggedness, calibration reproducibility, precision, accuracy, and test substance stability in calibration standards and processed quality control (QC) samples stored at room temperature for 2 days were established. Also in the previous study, test substance homogeneity and,

following 11 and 18 days of room temperature storage, resuspension homogeneity and stability were assessed and verified in formulations ranging in concentration from 1 to 100 mg CAS# 64741-62-4/mL. In the present study, test substance stability was assessed in calibration standards and QC samples stored at room temperature for 5 days. Also, formulations used for test substance administration were analyzed to verify test substance homogeneity and concentration acceptability.

A list of abbreviations potentially used in this report is presented in Section 8. (Abbreviations).

2.1. KEY STUDY DATES

Date(s)	Event(s)
12 September 2011	First date of analysis
6 October 2011	Last date of analysis

2.2. WIL RESEARCH KEY STUDY PERSONNEL

Scott D. Freer, BA	Manager/Research Chemist, Analytical Chemistry
Donna K. Murphy	Chemist II, Analytical Chemistry
Amanda M. Stanton, BA	Group Supervisor/Associate Research Chemist, Analytical Chemistry
Gregory A. Hawks, AS	Group Supervisor, Reporting & Technical Support Services
Melissa A. Hull, BS	Group Manager, Reporting & Technical Support Services

3. EXPERIMENTAL PROCEDURES - MATERIALS AND METHODS

3.1. TEST SUBSTANCE IDENTIFICATION

The test substance, clarified oils, catalytically cracked (CAS# 64741-62-4), was received from EPL Archives, Sterling, VA on behalf of American Petroleum Institute on 10 November 2010 as follows:

Identification	Quantity Received	Physical Description
Catalytically Cracked Slurry Oil Lot no. Site 12: Sample 2 WIL log no.8473A	4 Bottles	Dark brown, very viscous liquid

For purposes of dose calculations, the purity of the test substance was considered to be 100%. The test substance was stored at room temperature, protected from light and was considered stable under this condition. Reserve samples of the test substance (approximately 0.834 g) were collected on 15 November 2010 and stored in the WIL Research Archives.

3.2. GAS CHROMATOGRAPHY

Instrument: Agilent 6890 gas chromatograph equipped with a flame

ionization detector, an Agilent 7673 autosampler, and

Dionex Chromeleon® data system, or equivalent

Column: ZebronTM ZB-1HT InfernoTM column,

 $15 \text{ m} \times 0.32 \text{ mm ID}$, $0.25\text{-}\mu\text{m}$ film-thickness

Temperature Program: 120°C, hold for 1 minute

Ramp at 40°C/minute to 400°C, hold for 2 minutes

Carrier Gas: Helium

Carrier Gas Flow Rate: 1.5 mL/minute

Wash Vial: Ethyl acetate (EtOAc)

Injector Temperature: 300°C

Injection Volume: 1 μL Split (5:1)
Detector: FID at 400°C

Retention Time: Approximately 4.5 minutes for CAS# 64741-62-4 peak

group

Run Time: 10 minutes

6

3.3. Preparation of Calibration Stock Solution

A calibration standard stock solution was prepared at a concentration of 1.00 mg CAS# 64741-62-4/mL as follows. Approximately 25 mg of CAS# 64741-62-4 (WIL log no. 8473A, no correction for purity) was accurately weighed in a tared glass funnel and transferred to a 25-mL volumetric flask with rinses of EtOAc. The contents were mixed as needed to achieve dissolution of the test substance. Additional EtOAc was added to yield the desired concentration, and the solution was stirred to mix.

3.4. PREPARATION OF CALIBRATION STANDARDS

Calibration standards were prepared at 500, 600, 750, 850, and 1000 μg CAS# 64741-62-4/mL by thoroughly mixing the appropriate volumes of calibration stock solution and EtOAc in amber autosampler vials. At least single calibration standards were prepared at each concentration for routine analyses.

3.5. Preparation of the Quality Control Stock Solution

A QC stock solution was prepared at a concentration of 20.0 mg CAS# 64741-62-4/mL as follows. Approximately 0.2 g of CAS# 64741-62-4 (WIL log no. 8473A, no correction for purity) was accurately weighed in a tared glass funnel and transferred to a 10-mL volumetric flask with rinses of EtOAc. The contents were mixed as needed to achieve dissolution of the test substance. Additional EtOAc was added to yield the desired concentration, and the solution was stirred to mix.

3.6. Preparation and Processing of Quality Control Samples

As detailed in the following table, QC samples were prepared to simulate the processing of formulation samples at concentrations of 1.00, 10.0, and 100 mg CAS# 64741-62-4/mL (nominal QC concentrations) by combining aliquots of the QC stock solution, vehicle (acetone), and EtOAc in polypropylene tubes or amber autosampler vials. The QC samples were capped and mixed with vortex action. The processed samples were further diluted as necessary with EtOAc in amber autosampler

vials. The samples were capped, and thoroughly mixed with vortex action. Triplicate QC samples at each concentration were prepared; a single blank sample was prepared.

~	Nominal QC Concentration (mg/mL)		~		-	Theoretical Final Concentration (µg/mL)
Blank	0	0.500	0	0.300	NA	0
QC1	1.00	0.500	0.0250	0.275	NA	625
QC2	10.0	0.500	0.250	7.25	NA	625
QC3	100	0.500	2.50	7.00	6.67-fold	750

NA = Not applicable

3.7. FORMULATION SAMPLE PROCESSING

Quadruplicate formulation samples were collected using a 1-mL Class A volumetric pipette and placed in polypropylene tubes. Two samples from each quadruplicate set were processed for analysis, and the remaining 2 samples (back-up samples) were stored at room temperature and discarded upon the Study Director's acceptance of the analytical results. As detailed in the following table, formulation samples were processed by adding EtOAc and mixing with vortex action.

C	Theoretical Test	1		Theoretical Final
Group	Substance Concentration	volume	voiume	Concentration
	(mg/mL)	(mL)	(mL)	$(\mu g/mL)$
2	0	1.0	4.00	0
3	3.3	1.0	4.00	660
4	16.7	1.0	19.0	835
5	33.3	1.0	39.0	833

3.8. CALIBRATION AND QUANTITATION

Single injections were made of each calibration standard, processed QC, and formulation samples. A calibration curve was constructed for each set of analyses. The CAS# 64741-62-4 peak group area (y) and the theoretical concentrations (x) of the

calibration standards were fit with least-squares regression analysis to the quadratic function:

$$y = ax^2 + b x + c$$

Concentrations were back-calculated from the results of the regression analysis using Dionex Chromeleon[®] software. The concentration data were transferred to a Microsoft Excel[®] spreadsheet, where appropriate summary statistics, *i.e.*, mean, standard deviation (SD), relative standard deviation (RSD), and concentration as a percent of target, were calculated and presented in tabular form. The concentrations of the formulation and QC samples were calculated by applying any necessary multiplication factors to correct for dilution and/or unit conversions.

4. RESULTS AND DISCUSSION

Under the described chromatographic conditions, the retention time of the test substance was approximately 4.5 minutes. Figure 1, Figure 2, Figure 3, and Figure 4 are typical chromatograms of a calibration standard, a processed QC sample, a processed formulation sample, and a processed control group formulation sample, respectively. The total analysis time required for each run was 10 minutes.

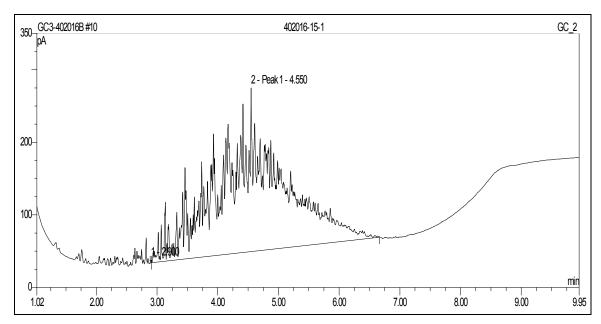


Figure 1: Representative Chromatogram of a 500 µg CAS# 64741-62-4/mL Calibration Standard

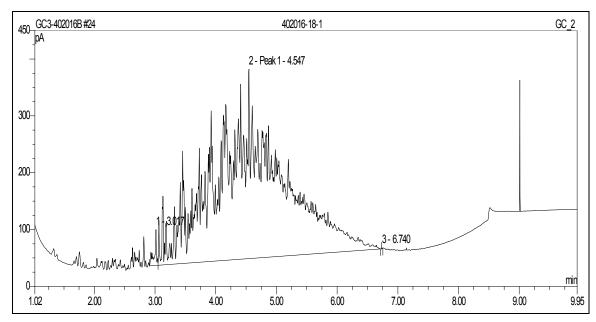


Figure 2: Representative Chromatogram of a Processed 100 mg CAS# 64741-62-4/mL Quality Control Sample

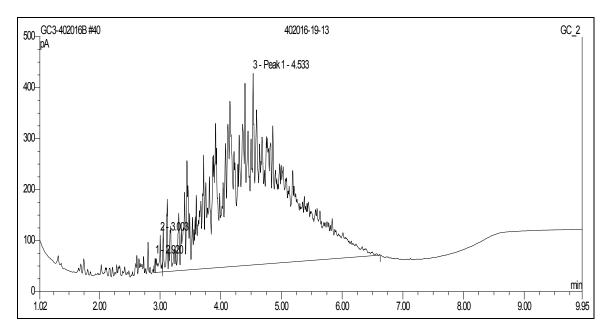


Figure 3: Representative Chromatogram of a Processed 16.7 mg CAS# 64741-62-4/mL Formulation Sample

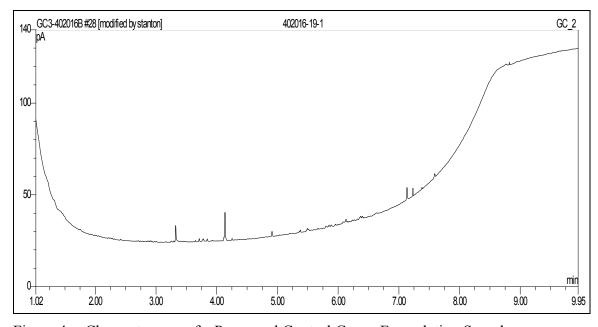


Figure 4: Chromatogram of a Processed Control Group Formulation Sample

4.1. SPECIFICITY/SELECTIVITY

As shown in Figure 4 (and in contrast to the chromatograms shown in Figure 1, Figure 2, and Figure 3), assay specificity/selectivity was confirmed when GC/FID analysis of processed vehicle samples revealed that there were no significant peaks (with signal-to-noise ratio [S/N] >10) at or near the retention time for the test substance peak group (approximately 4.5 minutes).

4.2. ASSAY ACCEPTABILITY

In addition to the experimental samples, each analytical session consisted of (but was not limited to) calibration standards at 5 concentrations and triplicate QC samples prepared at each of 3 concentrations. In this study, the formulations were prepared at target concentrations of 0, 3.3, 16.7, and 33.3 mg CAS# 64741-62-4/mL, and the QC samples were prepared at nominal concentrations of 1.00, 10.0, and 100 mg CAS# 64741-62-4/mL. For an analytical session to be considered valid, at least two-thirds of the calculated QC concentrations with at least 1 sample at each concentration had to be 85% to 115% of the nominal QC concentration. All reported results were from analytical sessions that met the acceptance criteria.

4.3. TEST SUBSTANCE STABILITY IN CALIBRATION STANDARDS

Calibration standards prepared at 500, 600, 750, 850, and 1000 µg/mL and analyzed on 1 October 2011 were stored at room temperature for 5 days before being re-analyzed to assess test substance stability. The mean post-storage concentrations ranged from 96.7% to 100% of the pre-storage values (Table 1), which met the WIL Research SOP requirement for stability, *i.e.*, the mean post-storage concentration was not <90% of the pre-storage value.

4.4. TEST SUBSTANCE STABILITY IN PROCESSED SAMPLES

QC samples prepared at nominal test article concentrations of 1.00, 10.0, and 100 mg/mL were processed and analyzed on 1 October 2011. The processed samples were stored at room temperature for 5 days before being re-analyzed to assess test substance stability.

The mean post-storage concentrations ranged from 97.0% to 100% of the pre-storage values (Table 2), which met the previously stated WIL Research SOP requirement for stability.

4.5. <u>TEST SUBSTANCE HOMOGENEITY AND CONCENTRATION ASSESSMENT</u> <u>OF FORMULATIONS</u>

Duplicate samples from the top, middle, and bottom strata of formulations used for test substance administration and prepared on 12 September 2011 and 30 September 2011 at target concentrations of 0, 3.3, 16.7, and 33.3 mg CAS# 64741-62-4/mL were analyzed to verify test substance homogeneity and concentration acceptability. The results of the homogeneity and concentration acceptability assessments are presented in Table 3 and Table 4, with the mean concentrations and overall statistics summarized in the following tables.

Homogeneity and Concentrat	tion Assessme	ent of the 12 Sep	ptember 2011 F	ormulations
	Group 1 (0 mg/mL)	Group 2 (3.3 mg/mL)	Group 3 (16.7 mg/mL)	Group 4 (33.3 mg/mL)
Mean Concentration (mg/mL)	ND	3.23	16.5	32.5
SD	NA	0.24	0.26	0.53
RSD (%)	NA	7.3	1.6	1.6
Mean % of Target	NA	97.8	98.9	97.6

ND = No test substance chromatographic peak detected

NA = Not applicable

Homogeneity and Concentra	ation Assessn	nent of the 30 S	eptember 2011 l	Formulations
	Group 1 (0 mg/mL)	Group 2 (3.3 mg/mL)	Group 3 (16.7 mg/mL)	Group 4 (33.3 mg/mL)
Mean Concentration (mg/mL)	ND	3.35	16.9	33.0
SD	NA	0.014	0.20	0.31
RSD (%)	NA	0.41	1.2	0.94
Mean % of Target	NA	102	101	99.1

ND = No test substance chromatographic peak detected

NA = Not applicable

The analyzed formulations met the WIL Research SOP requirement for homogeneity, *i.e.*, the RSD for the mean concentration was $\leq 10\%$ at a concentration within the acceptable limits (85% to 115% of target concentration) and concentration acceptability for suspension formulations, *i.e.*, the analyzed concentration was 85% to 115% of the target concentration. No test substance was detected in the analyzed vehicle administered to the control group (Group 1).

5. Conclusions

A validated GC/FID method was used for the determination of CAS# 64741-62-4 concentration in acetone formulations. Test substance stability in calibration standards and processed QC samples stored at room temperature for 5 days were assessed and validated, satisfying WIL Research SOP criteria. In addition, analyzed formulations used for test substance administration met the applicable WIL Research SOP acceptance criteria for test substance homogeneity and concentration acceptability. No test substance was detected in the analyzed vehicle administered to the control group.

6. REPORT REVIEW AND APPROVAL

WIL-402016 Analytical Chemistry Report

Report Approved by:

Jeffrey H. Charlap, MS Staff Toxicologist, Developmental and Reproductive Toxicology Study Director

Report Prepared by:

Amanda M. Stanton, BA

Group Supervisor/Associate Research Chemist, **Analytical Chemistry**

Report Reviewed by:

Eric S. Bodle, PhD

Assistant Director, Analytical Chemistry

7. REFERENCES

Haubenstricker, M.E. Analytical Validation and Stability Study of Catalytically Cracked Slurry Oil in Acetone Formulations. (Study No. WIL-402029). WIL Research Laboratories, LLC, Ashland, OH, **2011**.

8. ABBREVIATIONS

The following abbreviations may apply to this report:

μ - micro

μL - microliter

ACN - acetonitrile

btm - bottom

cm - centimeter

DI - deionized

DMSO - dimethylsulfoxide

ESI+ - positive electrospray ionization

FA - formic acid

g - gram

HPLC - high performance liquid chromatography

hr - hour(s)

IS - internal standard

kg - kilogram

L - liter

LLOQ - lower limit of quantitation

MC - methylcellulose

MeOH - methanol

mg - milligram

mL - milliliter

mm - millimeter

msec - milliseconds

MS - mass spectrometry

mM - millimolar

NA - not applicable

ND - not detected

ng - nanogram

QC - quality control

%RE - percent relative error

RSD - relative standard deviation

SD - standard deviation

SOP - standard operating procedure

SPE - solid phase extraction

UV - ultraviolet

v - volume

w - weight

WIL Research - WIL Research Laboratories, LLC

TABLES 1 - 4

Table 1. 5-Day Room Temperature Stability Analysis of the Calibration Samples

Date <u>Analyzed</u>	Theo. Conc (µg/mL)	<u>Ref #</u> (402016 -)	<u>Run #</u>	Conc (µg/mL)	Percent of Time Zero (%)	Overall Percent of Time Zero (%)
Calibration Sample	les					
01Oct2011	500	15 - 1	172	492	N/A	N/A
		15 - 2	215	514	N/A	
		15 - 3	216	504	N/A	
06Oct2011	500	15 - 1	233	508	103	100
		15 - 2	250	515	100	
		15 - 3	251	487	96.7	
01Oct2011	600	15 - 4	173	612	N/A	N/A
		15 - 5	217	616	N/A	
		15 - 6	218	615	N/A	
06Oct2011	600	15 - 4	234	577	94.3	96.7
		15 - 5	252	605	98.1	
		15 - 6	253	600	97.6	
01Oct2011	750	15 - 7	174	766	N/A	N/A
		15 - 8	219	771	N/A	
		15 - 9	220	756	N/A	
06Oct2011	750	15 - 7	235	752	98.2	98.2
		15 - 8	254	754	97.8	
		15 - 9	255	744	98.5	
01Oct2011	850	15 - 10	175	856	N/A	N/A
		15 - 11	221	872	N/A	
		15 - 12	222	871	N/A	
06Oct2011	850	15 - 10	236	841	98.2	98.6
		15 - 11	256	840	96.4	
		15 - 12	257	882	101	
01Oct2011	1000	15 - 13	176	1006	N/A	N/A
		15 - 14	223	996	N/A	
		15 - 15	224	1004	N/A	
06Oct2011	1000	15 - 13	237	1008	100	99.6
		15 - 14	258	1012	102	
		15 - 15	259	974.2	97.0	

N/A = Not applicable 402016 results.xlsx 3pss6d(rt) Printed: 12/16/11 10:57 AM

Table 2. 5-Day Room Temperature Stability Analysis of the Quality Control Samples

Date <u>Analyzed</u> QC Samples	Theo. Conc (mg/mL)	<u>Ref #</u> (402016 -)	<u>Run #</u>	Conc (mg/mL)	Percent of Time Zero (%)	Overall Percent of Time Zero (%)
01Oct2011	1.00	17 - 2	180	1.00	N/A	N/A
		17 - 3	181	1.03	N/A	
		17 - 4	182	1.04	N/A	
06Oct2011	1.00	17 - 2	240	1.00	99	97.0
		17 - 3	241	1.00	96.9	
		17 - 4	242	0.981	94.7	
01Oct2011	10.0	17 - 5	183	10.1	N/A	N/A
		17 - 6	184	10.0	N/A	
		17 - 7	185	9.79	N/A	
06Oct2011	10.0	17 - 5	243	9.65	95.2	97.3
		17 - 6	244	9.85	98	
		17 - 7	245	9.65	99	
01Oct2011	100	18 - 1	186	103	N/A	N/A
		18 - 2	187	104	N/A	
		18 - 3	188	101	N/A	
06Oct2011	100	18 - 1	246	97.9	95.4	100
		18 - 2	247	110	106	
		18 - 3	248	100	99	

N/A = Not applicable

402016 results.xlsx 3pss6d(rt)QC Printed: 12/16/11 10:57 AM

21

Table 3. Homogeneity/Concentration Assessment of the 12 September 2011 Formulations (Analyzed 12-16 September 2011)

<u>Group</u>	<u>Strata</u>	Dose <u>Conc</u> (mg/mL)	<u>Ref#</u> (402016-)	<u>Run #</u>	Analyzed Conc (mg/mL)	Percent of Target (%)	Mean <u>Conc</u> (mg/mL)	<u>SD</u>	<u>RSD</u> (%)	Mean Conc % of Target (%)
2	Тор	0	6 - 1	128		-Not Detected				
			6 - 2	129		-Not Detected				
	Mid	0	6 - 3	130		-Not Detected				
			6 - 4	131		-Not Detected				
	Btm	0	6 - 5	132		-Not Detected				
			6 - 6	133		-Not Detected				
3	Top	3.3	6 - 7	134	3.44	104	3.23	0.24	7.3	97.8
			6 - 8	135	3.26	98.9				
	Mid	3.3	6 - 9	136	2.77	83.9				
			6 - 10	137	3.31	100				
	Btm	3.3	6 - 11	138	3.23	98.0				
			6 - 12	139	3.34	101				
4	Top	16.7	6 - 13	140	16.1	96.7	16.5	0.26	1.6	98.9
			6 - 14	141	16.5	98.7				
	Mid	16.7	6 - 15	142	16.5	98.9				
			6 - 16	143	16.8	101				
	Btm	16.7	6 - 17	144	16.3	97.8				
			6 - 18	145	16.8	101				
5	Top	33.3	6 - 19	146	32.2	96.6	32.5	0.53	1.6	97.6
			6 - 20	147	33.3	100				
	Mid	33.3	6 - 21	148	32.0	96.2				
			6 - 22	149	32.6	97.9				
	Btm	33.3	6 - 23	150	32.9	98.9				
			6 - 24	151	31.9	95.9				

22

Table 4. Homogeneity/Concentration Assessment of the 30 September 2011 Formulations (Analyzed 30 September - 1 October 2011)

<u>Group</u>	<u>Strata</u>	Dose <u>Conc</u> (mg/mL)	<u>Ref#</u> (402016-)	<u>Run #</u>	Analyzed Conc (mg/mL)	Percent of Target (%)	Mean <u>Conc</u> (mg/mL)	<u>SD</u>	<u>RSD</u> (%)	Mean Conc % of Target (%)
2	Тор	0	19 - 1	190		Not Detected				
			19 - 2	191		Not Detected				
	Mid	0	19 - 3	192		Not Detected				
			19 - 4	193		Not Detected				
	Btm	0	19 - 5	194		Not Detected				
			19 - 6	195		Not Detected				
3	Top	3.3	19 - 7	196	3.36	102	3.35	0.014	0.41	102
			19 - 8	197	3.35	102				
	Mid	3.3	19 - 9	198	3.37	102				
			19 - 10	199	3.36	102				
	Btm	3.3	19 - 11	200	3.34	101				
			19 - 12	201	3.33	101				
4	Top	16.7	19 - 13	202	16.6	100	16.9	0.20	1.2	101
			19 - 14	203	16.9	101				
	Mid	16.7	19 - 15	204	17.2	103				
	_		19 - 16	205	16.7	100				
	Btm	16.7	19 - 17	206	17.0	102				
_	_		19 - 18	207	17.0	102				
5	Top	33.3	19 - 19	208	33.1	99.4	33.0	0.31	0.94	99.1
			19 - 20	209	33.2	99.6				
	Mid	33.3	19 - 21	210	33.1	99.3				
	D.	22.2	19 - 22	211	33.3	100				
	Btm	33.3	19 - 23	212	32.4	97.4				
			19 - 24	213	32.9	98.7				

402016 results.xlsx 6H Printed: 12/16/11 10:57 AM

APPENDIX D

Animal Room Environmental Conditions

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL- 402016 TEMPERATURE/HUMIDITY - STUDY SUMMARY REPORT

SPONSOR: 402 - AMERICAN PETROLEUM Page 1 of 5

STUDY SPECIFICATIONS: 402016 DATE IN 09/01/11 TIME IN 11:00

Page 158 of 394

DATE OUT 10/08/11 TIME OUT 08:00

ROOM SPECIFICATIONS: B ROOM 112 LOW TEMPERATURE °F: 66.0 HIGH TEMPERATURE °F: 76.0 LOW HUMIDITY %RH: 30.0

TEST SYSTEM: RAT LOW TEMPERATURE °C: 18.9 HIGH TEMPERATURE °C: 24.4 HIGH HUMIDITY %RH: 70.0

	PRIMARY TEMP		SECONDARY TEM	P	PRIMARY HUM	SECONDARY HUM
DATE	MEAN (°F)	MEAN (°C)	MEAN (°F)	MEAN (°C)	MEAN (%RH)	MEAN (%RH)
09/01/11	70.6	21.4	70.7	21.5	61.5	62.9
09/02/11	70.2	21.2	70.3	21.3	56.8	58.0
09/03/11	70.0	21.1	70.0	21.1	54.2	55.5
09/04/11	70.2	21.2	70.2	21.2	53.8	54.9
09/05/11	70.9	21.6	70.9	21.6	50.0	51.2
09/06/11	70.4	21.3	70.5	21.4	48.2	49.2
09/07/11	70.4	21.3	70.5	21.4	48.3	49.3
09/08/11	70.4	21.3	70.4	21.3	48.3	49.4
09/09/11	70.4	21.3	70.5	21.4	48.0	49.1
09/10/11	70.4	21.3	70.5	21.4	47.8	48.8
09/11/11	70.4	21.3	70.5	21.4	48.4	49.4
09/12/11	70.4	21.3	70.5	21.4	49.4	50.4
09/13/11	70.3	21.3	70.4	21.3	52.9	54.0
09/14/11	70.5	21.4	70.5	21.4	48.8	49.8
09/15/11	70.3	21.3	70.4	21.3	43.8	44.9
09/16/11	70.2	21.2	70.3	21.3	42.3	43.6
09/17/11	70.4	21.3	70.5	21.4	44.5	45.8
09/18/11	70.4	21.3	70.5	21.4	48.9	49.9
09/19/11	70.4	21.3	70.4	21.3	51.3	52.3

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL- 402016 TEMPERATURE/HUMIDITY - STUDY SUMMARY REPORT

Page 159 of 394

SPONSOR: 402 - AMERICAN PETROLEUM Page 2 of 5

	PRIMARY TEMP		SECONDARY TEM	IP	PRIMARY HUM	SECONDARY HUM
DATE	MEAN (°F)	MEAN (°C)	MEAN (°F)	MEAN (°C)	MEAN (%RH)	MEAN (%RH)
09/20/11	70.7	21.5	70.8	21.6	49.9	51.1
09/21/11	70.4	21.3	70.5	21.4	50.9	52.2
09/22/11	70.4	21.3	70.5	21.4	49.5	50.7
09/23/11	70.4	21.3	70.5	21.4	50.1	51.3
09/24/11	70.4	21.3	70.5	21.4	49.3	50.4
09/25/11	70.4	21.3	70.5	21.4	49.5	50.6
09/26/11	70.4	21.3	70.4	21.3	50.4	51.5
09/27/11	70.3	21.3	70.4	21.3	50.0	51.2
09/28/11	70.3	21.3	70.4	21.3	50.0	51.2
09/29/11	70.4	21.3	70.4	21.3	49.7	51.0
09/30/11	69.8	21.0	69.9	21.1	45.8	47.0
10/01/11	68.2	20.1	68.4	20.2	43.7	44.9
10/02/11	68.4	20.2	68.5	20.3	42.8	44.0
10/03/11	68.2	20.1	68.3	20.2	49.8	50.9
10/04/11	67.7	19.8	67.8	19.9	52.4	53.6
10/05/11	66.8	19.3	66.9	19.4	50.4	51.6
10/06/11	68.6	20.3	68.9	20.5	50.0	51.2
10/07/11	70.3	21.3	70.1	21.2	48.4	49.5
10/08/11	70.1	21.2	70.1	21.2	47.4	48.5

Page 160 of 394

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL- 402016 TEMPERATURE/HUMIDITY - STUDY SUMMARY REPORT

SPONSOR: 402 - AMERICAN PETROLEUM Page 3 of 5

	PRIMARY '	TEMP		SECONDARY TEN	1P	PRIMARY HUM	SECONDARY HUM
DATE	MEAN (°F) ME	AN (°C)	MEAN (°F)	MEAN (°C)	MEAN (%RH)	MEAN (%RH)
SUMMARY OF DAILY MEANS	MEAN	MIN	MAX				
PRIMARY TEMP °F:	70.0	66.8	70.9				
PRIMARY TEMP °C:	21.1	19.3	21.6				
SECONDARY TEMP °F:	70.0	66.9	70.9				
SECONDARY TEMP °C:	21.1	19.4	21.6				
PRIMARY HUM %RH:	49.3	42.3	61.5				
SECONDARY HUM %RH:	50.4	43.6	62.9				
N DAYS	38						

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL- 402016 TEMPERATURE/HUMIDITY - STUDY SUMMARY REPORT

SPONSOR: 402 - AMERICAN PETROLEUM Page 4 of 5

B ROOM 112 SUMMARY OF HOURLY VALUES

	PRIMAR	Y TEMP			SECOND	ARY TEM	?		PRIMAR	Y HUM	SECOND	ARY HUM
MEAN	70.0	۰ _F	21.1	°C	70.0	٥F	21.1	°C	49.3	%RH	50.4	%RH
MIN	65.3	٥F	18.5	°C	65.4	٥F	18.6	°C	38.7	%RH	40.0	%RH
MAX	73.1	\circ_F	22.8	°C	73.3	٥F	22.9	°C	69.0	%RH	70.7	%RH
SD	1.19		0.66		1.18		0.66		4.18		4.19	
SE	0.04		0.02		0.04		0.02		0.14		0.14	
N SAMPLES	883				883				883		883	
FIRST DAY	09/01/	11										
LAST DAY	10/08/	11										
N DAYS	38											

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL- 402016 TEMPERATURE/HUMIDITY - STUDY SUMMARY REPORT

SPONSOR: 402 - AMERICAN PETROLEUM Page 5 of 5

STUDY 402016 SUMMARY OF HOURLY VALUES

	PRIMAR	Y TEMP			SECOND	ARY TEM	?		PRIMAR	Y HUM	SECOND	ARY HUM
MEAN	70.0	٥F	21.1	°C	70.0	٥F	21.1	°C	49.3	%RH	50.4	%RH
MIN	65.3	٥F	18.5	°C	65.4	٥F	18.6	°C	38.7	%RH	40.0	%RH
MAX	73.1	۰F	22.8	°C	73.3	٥F	22.9	°C	69.0	%RH	70.7	%RH
SD	1.19		0.66		1.18		0.66		4.18		4.19	
SE	0.04		0.02		0.04		0.02		0.14		0.14	
N SAMPLES	883				883				883		883	
FIRST DAY	09/01/	11										
LAST DAY	10/08/	11										
N DAYS	38											

APPENDIX E

Scoring Criteria for Dermal Reactions

SCORING CRITERIA FOR DERMAL REACTIONS

Evaluation of Dermal Reactions*

<u>Value</u>	Erythema and Eschar Formation	Computer Designation
0	No erythema	No erythema
1	Very slight erythema (barely perceptible, edges of area not well defined)	Very slight erythema
2	Slight erythema (pale red in color and edges definable)	Slight erythema
3	Moderate to severe erythema (definite red in color and area well defined)	Moderate erythema
4	Severe erythema (beet or crimson red) to slight eschar formation (injuries in depth)	Severe erythema
<u>Value</u>	Edema Formation	Computer Designation
<u>Value</u> 0	Edema Formation No edema	Computer Designation No edema
0	No edema Very slight edema (barely perceptible,	No edema
0	No edema Very slight edema (barely perceptible, edges of area not well defined) Slight edema (edges of area well defined	No edema Very slight edema

^{*} Draize, J.H. The appraisal of the safety of chemicals in foods, drugs and cosmetics. Dermal Toxicity 1965, 46-59. Assoc. of Food and Drug Officials of the U.S., Topeka, Kansas and the EPA-OPPTS Health Effects Test Guidelines 1998.

APPENDIX F

Visceral and Skeletal Findings for Dead Fetus

WIL-402016 American Petroleum Institute

Dam No.	Group	Fetus No.	Fetus Sex	Visceral Findings	Skeletal Findings
26373	4	2	F	N	14th rudimentary ribs (right)

F = Female

N = No remarkable observations

APPENDIX G

WIL Developmental Historical Control Data Version 3.10 [Crl:CD(SD) Rats]

Study Date Range: 4/21/1998-8/27/2010 Mean of Study Means

Endpoint	Total	Mean	S.D.	SEM	Median	Min	Max	25th Quartile	75th Quartile
NO. OF DATASETS	168								
Total No. of Animals in the Control Group	4166								
No. of Animals That Died	6								
No. of Animals That Aborted	0								
No. of Animals That Delivered	0								
Percent Pregnant		96.6	4.55	0.35	100.0	76.0	100.0	96.0	100.0
No. Gravid	4026								
No. With Only Resorptions	6								
No. of Dams With Live Fetuses	4015								
No. Nongravid	253								
No. of Animals Examined at Laparohysterectomy	4160								
Mean Gravid Uterine Weight (g)		85.4	3.70	0.29	85.7	72.2	95.4	82.8	88.1
Mean No. Viable Fetuses/Dam		15.1	0.69	0.05	15.1	12.2	17.1	14.7	15.5
Total No. Viable Fetuses	60839								
Viable Fetuses (%/Litter)		95.1	1.57	0.12	95.4	90.1	98.0	94.0	96.2
Mean No. Postimplantation Loss/Dam		0.7	0.22	0.02	0.7	0.3	1.4	0.6	0.9
Total No. of Postimplantation Losses	3025								
Postimplantation Loss (%/Litter)		4.9	1.57	0.12	4.6	2.0	9.9	3.8	6.0
Early Resorptions (%/Litter)		4.8	1.59	0.12	4.5	1.5	9.9	3.6	5.8
Late Resorptions (%/Litter)		0.1	0.19	0.01	0.0	0.0	0.8	0.0	0.2
Dead Fetuses (%/Litter)		0.0	0.05	0.00	0.0	0.0	0.5	0.0	0.0
Mean No. Implantations/Dam		15.9	0.68	0.05	15.9	13.0	17.6	15.4	16.3
Mean No. Corpora Lutea/Dam		17.2	0.83	0.06	17.2	14.5	19.4	16.6	17.7
Mean No. Preimplantation Loss/Dam		1.4	0.59	0.05	1.3	0.3	3.1	0.9	1.7
Total No. Preimplantation Losses	5427								
Preimplantation Loss (%/Litter)		7.3	2.97	0.23	7.1	1.5	15.7	5.2	9.1
Total No. Male Fetuses	30376								
Total No. Female Fetuses	30463								
% Males/Litter1		49.9	2.70	0.21	49.8	43.1	56.7	47.9	51.8
% Females/Litter		50.1	2.70	0.21	50.2	43.3	56.9	48.2	52.1
Mean Fetal Body Weight (g)		3.7	0.11	0.01	3.6	3.4	3.9	3.6	3.7
Mean Male Body Weight (g)		3.8	0.12	0.01	3.7	3.5	4.0	3.7	3.8
Mean Female Body Weight (g)		3.6	0.11	0.01	3.6	3.4	3.8	3.5	3.6

Developmental Parameters for Crl:CD(SD) Rats (Standard) v. 3.10 Mon Dec 12 2011

otal No. of Fetuses/Litters Examined Viscerally	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

TALL TODAY (ALD TALL)		~ ~	~~~				25th	75th	
MALFORMATIONS (% Per Litter)	Mean	S.D.	SEM	Median	Min	Max	Quartile	Quartile	_
TOTAL EXTERNAL MALFORMATIONS	0.1	0.21	0.02	0.0	0.0	1.3	0.0	0.2	
TOTAL VISCERAL MALFORMATIONS	0.1	0.17	0.01	0.0	0.0	0.9	0.0	0.0	
TOTAL SKELETAL MALFORMATIONS	0.1	0.23	0.02	0.0	0.0	1.1	0.0	0.3	
TOTAL MALFORMATIONS	0.3	0.35	0.02	0.2	0.0	1.6	0.0	0.5	
EXTERNAL									
Aglossia	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0	
Anal Atresia	0.0	0.05	0.00	0.0	0.0	0.3	0.0	0.0	
Apodia	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0	
Astomia	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0	
Carpal and/or Tarsal Flexure	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0	
Cleft Face	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0	
Cleft Lip	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0	
Cleft Palate	0.0	0.04	0.00	0.0	0.0	0.3	0.0	0.0	
Craniorachischisis	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0	
Cyclopia	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0	
Ectromelia	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0	
Exencephaly with or without Open Eyelid(s)	0.0	0.04	0.00	0.0	0.0	0.3	0.0	0.0	
Fetal Anasarca	0.0	0.12	0.01	0.0	0.0	1.3	0.0	0.0	
Filamentous Tail	0.0	0.04	0.00	0.0	0.0	0.3	0.0	0.0	
Gastroschisis	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0	
Hydrocephaly with or without Dome Head	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0	
Mandibular Agnathia	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0	
Mandibular Micrognathia	0.0	0.05	0.00	0.0	0.0	0.3	0.0	0.0	
Maxillary Agnathia	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0	
Meningoencephalocele	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0	

Developmental Parameters for Crl:CD(SD) Rats (Standard) v. 3.10 Mon Dec 12 2011

NO. OF DATASETS

Total No. of Fetuses/Litters Examined Externally

Total No. of Fetuses/Litters Examined Viscerally

Total No. of Fetuses/Litters Examined Skeletally

59537

3941

MALFORMATIONS (% Per Litter)	Mean	S.D.	SEM	Median	Min	Max	25th Quartile	75th Quartile
EXTERNAL								
Micromelia	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Microphthalmia and/or Anophthalmia	0.0	0.09	0.01	0.0	0.0	0.5	0.0	0.0
Omphalocele	0.0	0.05	0.00	0.0	0.0	0.3	0.0	0.0
Open Eyelid(s)	0.0	0.03	0.00	0.0	0.0	0.2	0.0	0.0
Proboscis-Like Nose	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Spina Bifida	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Tail- Short	0.0	0.04	0.00	0.0	0.0	0.3	0.0	0.0
Umbilical Herniation of the Intestine	0.0	0.07	0.01	0.0	0.0	0.8	0.0	0.0
VISCERAL								
Aorta- Narrowed	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0
Epididymis- Absent	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Heart and/or Great Vessel Anomaly	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Hydrocephaly	0.0	0.08	0.01	0.0	0.0	0.8	0.0	0.0
Interrupted Aortic Arch	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0
Kidney(s)- Absent	0.0	0.03	0.00	0.0	0.0	0.4	0.0	0.0
Kidney(s) and/or Ureter(s) Absent	0.0	0.04	0.00	0.0	0.0	0.3	0.0	0.0
Lung(s)- Lobular Agenesis	0.0	0.04	0.00	0.0	0.0	0.6	0.0	0.0
Lung(s)- Lobular Dysgenesis	0.0	0.06	0.00	0.0	0.0	0.5	0.0	0.0
Retroesophageal Aortic Arch	0.0	0.05	0.00	0.0	0.0	0.3	0.0	0.0
Situs Inversus	0.0	0.08	0.01	0.0	0.0	0.4	0.0	0.0
Testis- Absent	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Thyroid Gland(s)- Absent	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0
Transposition of the Great Vessels	0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0
Vessel(s)- Malpositioned	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Vessel(s)- Malpositioned	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0

NO. OF DATASETS

Total No. of Fetuses/Litters Examined Externally

Total No. of Fetuses/Litters Examined Viscerally

Total No. of Fetuses/Litters Examined Skeletally

59537

3941

MALFORMATIONS (% Per Litter)	Mean	S.D.	SEM	Median	Min	Max	25th Quartile	75th Quartile
SKELETAL								
14th Full Rib(s)	0.1	0.16	0.01	0.0	0.0	0.9	0.0	0.0
Bent Limb Bone(s)	0.0	0.08	0.01	0.0	0.0	1.0	0.0	0.0
Bent Scapula	0.0	0.08	0.01	0.0	0.0	1.0	0.0	0.0
Costal Cartilage Anomaly	0.0	0.05	0.00	0.0	0.0	0.3	0.0	0.0
Limb Bone(s)- Small	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Rib Anomaly	0.0	0.08	0.01	0.0	0.0	0.4	0.0	0.0
Rib(s)- Only 11 Pairs Present	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Rib(s)- Only 12 Pairs Present	0.0	0.07	0.01	0.0	0.0	0.5	0.0	0.0
Scapula- Misshapen	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Skull Anomaly	0.0	0.03	0.00	0.0	0.0	0.4	0.0	0.0
Sternebra(e)- Fused	0.0	0.08	0.01	0.0	0.0	1.0	0.0	0.0
Sternebra(e)- Malaligned (Severe)	0.0	0.05	0.00	0.0	0.0	0.4	0.0	0.0
Sternoschisis	0.0	0.07	0.01	0.0	0.0	0.6	0.0	0.0
Vertebral Agenesis	0.0	0.07	0.01	0.0	0.0	0.3	0.0	0.0
Vertebral Anomaly with or without Associated Rib Anomaly	0.0	0.11	0.01	0.0	0.0	0.7	0.0	0.0
Vertebral Centra Anomaly	0.0	0.06	0.00	0.0	0.0	0.5	0.0	0.0

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

3,331 3	711					25th	75th
Mean	S.D.	SEM	Median	Min	Max	Quartile	Quartile
0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
0.5	0.74	0.06	0.3	0.0	4.0	0.0	0.6
33.7	6.68	0.52	33.6	18.0	50.4	29.7	37.3
33.9	6.80	0.38	33.7	17.1	51.1	29.7	37.8
0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
0.0	0.11	0.01	0.0	0.0	1.4	0.0	0.0
0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0
0.0	0.07	0.01	0.0	0.0	0.3	0.0	0.0
0.0	0.03	0.00	0.0	0.0	0.3	0.0	0.0
0.0	0.16	0.01	0.0	0.0	1.6	0.0	0.0
0.0	0.04	0.00	0.0	0.0	0.3	0.0	0.0
0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
0.1	0.16	0.01	0.0	0.0	0.8	0.0	0.0
s) 0.3	0.64	0.05	0.0	0.0	4.0	0.0	0.3
0.0	0.06	0.00	0.0	0.0	0.8	0.0	0.0
0.0	0.09	0.01	0.0	0.0	1.0	0.0	0.0
0.0	0.07	0.01	0.0	0.0	0.3	0.0	0.0
0.0	0.13	0.01	0.0	0.0	1.4	0.0	0.0
	0.0 0.5 33.7 33.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	0.0 0.02 0.5 0.74 33.7 6.68 33.9 6.80 0.0 0.02 0.0 0.02 0.0 0.11 0.0 0.02 0.0 0.02 0.0 0.02 0.0 0.02 0.0 0.03 0.0 0.07 0.0 0.03 0.0 0.16 0.0 0.04 0.0 0.02 0.1 0.16 s) 0.3 0.64 0.0 0.06 0.0 0.09 0.0 0.07	0.0 0.02 0.00 0.5 0.74 0.06 33.7 6.68 0.52 33.9 6.80 0.38 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.11 0.01 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.02 0.00 0.0 0.03 0.00 0.0 0.07 0.01 0.0 0.03 0.00 0.0 0.16 0.01 0.0 0.04 0.00 0.0 0.04 0.00 0.0 0.05 0.00 0.0 0.06 0.01 s) 0.3 0.64 0.05 0.0 0.06 0.00 0.0 0.09 0.01 0.0 0.07 0.01	0.0 0.02 0.00 0.0 0.5 0.74 0.06 0.3 33.7 6.68 0.52 33.6 33.9 6.80 0.38 33.7 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.11 0.01 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.02 0.00 0.0 0.0 0.03 0.00 0.0 0.0 0.03 0.00 0.0 0.0 0.03 0.00 0.0 0.0 0.03 0.00 0.0 0.0 0.04 0.00 0.0 0.0 0.04 0.00 0.0 0.0 0.04 0.00 0.0 0.0 0.04 0.00 0.0 0.0 0.05 0.0 0.0 0.1 0.16 0.01 0.0 0.0 0.02 0.00 0.0 0.1 0.16 0.01 0.0 0.0 0.04 0.00 0.0 0.0 0.05 0.0 0.0 0.0 0.06 0.00 0.0 0.0 0.09 0.01 0.0 0.0 0.09 0.01 0.0	0.0 0.02 0.00 0.0 0.0 0.5 0.74 0.06 0.3 0.0 33.7 6.68 0.52 33.6 18.0 33.9 6.80 0.38 33.7 17.1 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.01 0.01 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.03 0.00 0.0 0.0 0.0 0.03 0.00 0.0 0.0 0.0 0.03 0.00 0.0 0.0 0.0 0.04 0.00 0.0 0.0 0.0 0.05 0.06 0.01 0.0 0.0 0.1 0.16 0.01 0.0 0.0 0.0 0.02 0.00 0.0 0.1 0.16 0.01 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.00 0.0	0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.5 0.74 0.06 0.3 0.0 4.0 33.7 6.68 0.52 33.6 18.0 50.4 33.9 6.80 0.38 33.7 17.1 51.1 0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.11 0.01 0.0 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.01 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.02 0.00 0.0 0.0 0.0 0.3 0.0 0.03 0.00 0.0 0.0 0.0 0.3 0.0 0.03 0.00 0.0 0.0 0.0 0.3 0.0 0.07 0.01 0.0 0.0 0.0 0.3 0.0 0.04 0.00 0.0 0.0 0.0 0.3 0.0 0.04 0.00 0.0 0.0 0.0 0.3 0.0 0.04 0.00 0.0 0.0 0.0 0.3 0.1 0.16 0.01 0.0 0.0 0.0 0.3 0.1 0.16 0.01 0.0 0.0 0.0 0.3 0.1 0.16 0.01 0.0 0.0 0.0 0.8 0.0 0.02 0.00 0.0 0.0 0.0 0.8 0.0 0.04 0.05 0.0 0.0 0.0 0.8 0.0 0.06 0.00 0.0 0.0 0.0 0.8 0.0 0.09 0.01 0.0 0.0 0.0 0.8	0.0 0.02 0.00 0.0 0.0 0.0 0.0 0.0 0.0 0.

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

VADIATIONS (8/ Part 1:44-r)	M	c D	CEM	Madian	М:	M	25th	75th
VARIATIONS (% Per Litter)	Mean	S.D.	SEM	Median	Min	Max	Quartile	Quartile
VISCERAL								
Testis- Small	0.0	0.03	0.00	0.0	0.0	0.2	0.0	0.0
SKELETAL								
14th Rudimentary Rib(s)	7.0	3.15	0.25	6.4	0.0	18.9	4.8	8.7
25 Presacral Vertebrae	0.1	0.30	0.02	0.0	0.0	2.0	0.0	0.0
27 Presacral Vertebrae	0.2	0.27	0.02	0.0	0.0	1.8	0.0	0.3
7th Cervical Rib(s)	0.8	0.80	0.06	0.7	0.0	3.7	0.3	1.1
7th Sternebra	0.0	0.24	0.02	0.0	0.0	2.5	0.0	0.0
Bent Rib(s)	0.2	0.47	0.04	0.0	0.0	4.0	0.0	0.3
Cervical Centrum #1 Ossified	20.4	5.80	0.45	19.7	6.6	35.8	16.5	24.6
Entire Sternum Unossified	0.0	0.07	0.01	0.0	0.0	0.4	0.0	0.0
Extra Site of Ossification Anterior to Cervical Centrum #2	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Extra Site of Ossification Anterior to Rib #5	0.0	0.02	0.00	0.0	0.0	0.2	0.0	0.0
Extra Site of Ossification Anterior to Sternebra #1	0.0	0.04	0.00	0.0	0.0	0.4	0.0	0.0
Extra Site of Ossification Anterior to Sternebra #2	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Extra Site of Ossification Ventral to Cervical Centrum #2	0.0	0.02	0.00	0.0	0.0	0.3	0.0	0.0
Hyoid Unossified	1.3	0.99	0.08	1.2	0.0	4.4	0.4	1.9
Ischium Unossified	0.0	0.06	0.00	0.0	0.0	0.6	0.0	0.0
Pubis Unossified	0.1	0.22	0.02	0.0	0.0	2.3	0.0	0.0
Reduced Ossification of the 13th Rib(s)	0.6	0.67	0.05	0.5	0.0	3.6	0.2	0.8
Reduced Ossification of the Limb Bone(s)	0.0	0.03	0.00	0.0	0.0	0.2	0.0	0.0
Reduced Ossification of the Rib(s)	0.0	0.12	0.01	0.0	0.0	1.2	0.0	0.0
Reduced Ossification of the Skull	0.1	0.19	0.02	0.0	0.0	1.0	0.0	0.0
Reduced Ossification of the Vertebral Arches	0.1	0.19	0.02	0.0	0.0	1.1	0.0	0.2
Skull Bone(s)- Accessory	0.0	0.08	0.01	0.0	0.0	0.7	0.0	0.0
Sternebra(e) #1, #2, #3 and/or #4 Unossified	0.2	0.26	0.02	0.0	0.0	1.3	0.0	0.3

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

VARIATIONS (% Per Litter)	Mean	S.D.	SEM	Median	Min	Max	25th Quartile	75th Quartile
SKELETAL								
Sternebra(e) #5 and/or #6 Unossified	6.4	5.87	0.46	4.1	0.0	26.1	2.5	8.8
Sternebra(e)- Malaligned (Slight or Moderate)	0.4	0.49	0.04	0.3	0.0	3.0	0.0	0.6
Sternebrae with Thread-Like Attachment	0.0	0.06	0.00	0.0	0.0	0.6	0.0	0.0
Unco-Ossified Vertebral Centra	0.0	0.06	0.01	0.0	0.0	0.5	0.0	0.0
Vertebral Centra Unossified	0.0	0.05	0.00	0.0	0.0	0.4	0.0	0.0

Modal Distribution of Fetal Body Weights

No. of Datasets in Historical Control 167

Range of Study Dates 4/21/1998 - 8/27/2010

No. of Dams in Historical Control4279No. of Dams with Live Fetuses4015Mean Fetal Body Weight Range (g)3.4 - 3.9

Mean Fetal Body Weight (g)	3.4	3.5	3.6	3.7	3.8	3.9
Total No. Datasets	2	29	55	47	24	10
Mean Litter Size	15.1	15.4	15.2	15.2	14.6	14.5
Litter Size Range	15.0 - 15.1	14.4 - 17.1	13.7 - 16.7	13.7 - 16.6	12.2 - 15.8	13.8 - 15.3

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

	Nun	nber
MALFORMATIONS	Fetuses	Litters
EXTERNAL		
Microphthalmia and/or Anophthalmia	18	18
Mandibular Micrognathia	7	7
Omphalocele	7	7
Fetal Anasarca	7	5
Umbilical Herniation of the Intestine	6	6
Anal Atresia	5	5
Filamentous Tail	5	5
Cleft Palate	4	4
Exencephaly with or without Open Eyelid(s)	3	3
Tail- Short	3	3
Aglossia	2	2
Carpal and/or Tarsal Flexure	2	2
Cyclopia	2	2
Mandibular Agnathia	2	2
Open Eyelid(s)	2	2
Apodia	1	1
Astomia	1	1
Cleft Face	1	1
Cleft Lip	1	1
Craniorachischisis	1	1
Ectromelia	1	1
Gastroschisis	1	1
Hydrocephaly with or without Dome Head	1	1

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

AL FORMATIONS	Nun	nber
MALFORMATIONS	Fetuses	Litters
EXTERNAL		
Maxillary Agnathia	1	1
Meningoencephalocele	1	1
Micromelia	1	1
Proboscis-Like Nose	1	1
Spina Bifida	1	1
VISCERAL		
Situs Inversus	14	14
Hydrocephaly	9	9
Lung(s)- Lobular Dysgenesis	7	6
Retroesophageal Aortic Arch	5	5
Kidney(s) and/or Ureter(s) Absent	4	4
Interrupted Aortic Arch	2	2
Thyroid Gland(s)- Absent	2	2
Transposition of the Great Vessels	2	2
Aorta- Narrowed	1	1
Epididymis- Absent	1	1
Heart and/or Great Vessel Anomaly	1	1
Kidney(s)- Absent	1	1
Lung(s)- Lobular Agenesis	1	1
Testis- Absent	1	1
Vessel(s)- Malpositioned	1	1
SKELETAL		
14th Full Rib(s)	45	39

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

	Nun	Number	
ALFORMATIONS	Fetuses	Litters	
KELETAL			
Vertebral Anomaly with or without Associated Rib Anomaly	23	20	
Rib Anomaly	11	11	
Vertebral Agenesis	10	10	
Sternoschisis	10	9	
Rib(s)- Only 12 Pairs Present	7	7	
Vertebral Centra Anomaly	7	7	
Costal Cartilage Anomaly	6	6	
Sternebra(e)- Malaligned (Severe)	5	5	
Bent Limb Bone(s)	5	3	
Bent Scapula	5	3	
Sternebra(e)- Fused	2	2	
Limb Bone(s)- Small	1	1	
Rib(s)- Only 11 Pairs Present	1	1	
Scapula- Misshapen	1	1	
Skull Anomaly	1	1	

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

	Nun	nber
VARIATIONS	Fetuses	Litters
EXTERNAL		
Twinning	1	1
VISCERAL		
Renal Papilla(e) not Developed and/or Distended Ureter(s)	156	97
Major Blood Vessel Variation	47	45
Liver- Accessory Lobule(s)	16	10
Hemorrhagic Ring Around the Iris	12	12
Spleen- Pale	9	9
Spleen- Accessory	8	5
Spleen- Small	6	6
Adrenal Gland(s)- Enlarged	5	1
Liver- Pale	4	4
Hemorrhagic Iris	2	2
Kidney(s)- Small	2	2
Testis- Small	2	2
Retrocaval Ureter(s)	2	1
Adrenal Gland(s)- Accessory	1	1
Adrenal Gland(s)- Pale	1	1
Diaphragm- Thin	1	1
Heart- Small	1	1
Liver- Swollen	1	1
SKELETAL		
Cervical Centrum #1 Ossified	11969	3004
14th Rudimentary Rib(s)	4154	1710

NO. OF DATASETS	165	
Total No. of Fetuses/Litters Examined Externally	59744	3942
Total No. of Fetuses/Litters Examined Viscerally	59550	3942
Total No. of Fetuses/Litters Examined Skeletally	59537	3941

	Nun	nber
VARIATIONS	Fetuses	Litters
SKELETAL		
Sternebra(e) #5 and/or #6 Unossified	3908	1415
Hyoid Unossified	767	492
7th Cervical Rib(s)	492	372
Reduced Ossification of the 13th Rib(s)	366	249
Sternebra(e)- Malaligned (Slight or Moderate)	229	204
Sternebra(e) #1, #2, #3 and/or #4 Unossified	114	106
Bent Rib(s)	99	77
27 Presacral Vertebrae	89	71
Reduced Ossification of the Vertebral Arches	67	62
25 Presacral Vertebrae	62	37
Reduced Ossification of the Skull	52	45
Pubis Unossified	42	36
7th Sternebra	24	10
Reduced Ossification of the Rib(s)	20	17
Entire Sternum Unossified	9	9
Skull Bone(s)- Accessory	8	8
Unco-Ossified Vertebral Centra	6	6
Vertebral Centra Unossified	5	5
Ischium Unossified	4	3
Extra Site of Ossification Anterior to Sternebra #1	3	3
Sternebrae with Thread-Like Attachment	3	2
Reduced Ossification of the Limb Bone(s)	2	2
Extra Site of Ossification Anterior to Cervical Centrum #2	1	1

FINAL REPORT

<u>Contents</u>: Volume 2 of 2

Appendix H

Study Title: A Dermal Prenatal Developmental Toxicity Study of

Clarified Oils, Catalytic Cracked in Rats

<u>Laboratory Project ID</u>: WIL-402016

Author: Jeffrey H. Charlap, MS

<u>Test Guidelines</u>: OPPTS 870.3700

OECD Guideline 414

Study Completion Date: 12 July 2012

Performing Laboratory: WIL Research Laboratories, LLC

1407 George Road

Ashland, OH 44805-8946

Sponsor: American Petroleum Institute

1220 L Street, NW

Washington, DC 20005

Total Number of Pages: 394

APPENDIX H

Individual Animal Data

INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 P P P P 1 P NO SIGNIFICANT CLINICAL OBSERVATIONS 26433 Р 26383 1 P P P P P 1 P P 26384 P PP PPP P 26349 1 P P P 26395 1 P PΡ Ρ 26405 1 P PPPP 1 26327 Ρ 1 P PΡ 26426 26312 1 P 1 P 26368 26318 1 P P PPPP 26407 1 P P P 1 P 26451 26432 1 P P 1 P PPPP 26330 P P P 26317 1 P P PP PP 26309 1 P 26434 1 P PP P 26447 1 P 26304 1 P P P P 26302 1 P P P P P P P 26369 1 P P P P 26380 1 P P 1 P P 26420 P P P P 1 P Ρ 26430 2 P 26386 26392 2 P P P

PAGE 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS

GESTATIONAL DAY 1 1 1 1 1 1 1 1 2

OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0

PAGE 2

OBSERVATION	ANIMAL GROUP	0 1 2 3 4 5 6		0 1	111	L 1 1 5	1 6	1 1 7 8	1 2 9 0	
NO SIGNIFICANT CLINICAL OBSERVATIONS	26322 2	PPP PP	P P		P I	P P	Р	P P	P	
	26366 2	P								
	26350 2	P			P			Ρ	PΡ	
	26342 2	P		P		P P			PΡ	
	26355 2	P		P				P		
	26352 2	P								
	26337 2	P		P				P	P	
	26414 2	P		P				P P		
	26403 2	P		P				PР	P	
	26305 2	P		P					P	
	26315 2	P		P				P P	PΡ	
	26336 2	P		P	P			Р		
	26331 2	P		P	P	Ρ		Р		
	26344 2	P								
	26453 2	P	P							
	26418 2	P	P		P		Ρ	Р		
	26371 2	P P	P				Ρ		P	
	26439 2	P P	P							
	26442 2	P	P				Ρ	Ρ		
	26303 2	P	P		I	P P	Ρ	P P	P	
	26346 2	P P								
	26438 2	P	P		I	P P		Р	P	
	26423 2	P								
	26328 3	P P			P I	P P	Ρ		P	
	26402 3	P P				P P		Ρ		
	26358 3	P			P					
	26388 3	P	P			P P	P	P	P P	

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 3 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

NO SIGNIFICANT CLINICAL OBSERVATIONS 26329	
26320 3 P P P P P P P P P P P P P P P P P P	
26424 3 P P P P P P P P P P P P P P P P P P	
26435 3 P 26419 3 P 26437 3 P 26397 3 P 26398 3 P 26398 3 P 26316 3 P 26317 3 P 26318 3 P 26318 3 P 26319 3 P 26310 P 26310 P 26310 P 26310 P P P P P P P P P P P P P P P P P P P	
26419 3 P P P P P P P P P P P P P P P P P P	
26437 3 P 26397 3 P 26397 3 P 26385 3 P P P P P P P P P P P P P P P P P P P	
26397 3 P P P P P P P P P P P P P P P P P P	
26385 3 P P P P P P P P P P P P P P P P P P	
26316 3 P 26409 3 P 26365 3 P 26319 3 P 26311 3 P 26321 3 P 26421 3 P 26354 3 P 26351 3 P P P P P P P P P P P P P P P P P P P	
26409 3 P P P P P P P P P P P P P P P P P P	
26365 3 P P P P P P P P P P P P P P P P P P	
26319 3 P P P 26341 3 P P P P P 26421 3 P P P P P P P 26454 3 P P P P P P 26343 3 P P P P P P 26370 3 P P P P 26351 3 P P P 26351 3 P P P	
26341 3 P P P P P P 26421 3 P P P P P P P P P P P P P P P P P P	
26421 3 P P P P P P P P P P P P P P P P P P	
26454 3 P PPP 26343 3 P P PP 26370 3 P P P P 26351 3 P P P 26351 3 P P P 26354 3 P	
26343 3 P P P P P P P P P P P P P P P P P	
26370 3 P P P P P 26351 3 P P P P P P P P P P P P P P P P P P	
26351 3 P P P P 26354 3 P P P	
26354 3 P	
26378 3 P 26323 3 P	
26398 4 P P P P P P P	
26373 4 P	
26313 4 P P P	
26345 4 P P P	

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 4 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

DESERVATION	ANIMAL GROUP	GESTATIONAL 1 0 1 2 3 4 5	DAY 1 1 1 1 1 6 7 8 9 0 1 2 3 4	1 1 1 1 1 2 5 6 7 8 9 0	
O SIGNIFICANT CLINICAL OBSERVATIONS	26391 4	P			
	26379 4	P	P		
	26387 4	P	P	P P	
	26390 4	P	P		
	26400 4	P	P		
	26404 4	P			
	26399 4	P		P	
	26301 4	P	P	PPP	
	26332 4	P	P P	P	
	26357 4	P	P		
	26396 4	P			
	26353 4	P		P P	
	26372 4	P		P P P	
	26408 4	P			
	26415 4	P			
	26325 4	P	P P	P	
	26431 4	P	P	P	
	26306 4	P P	P	P	
	26425 4	P			
	26382 5	P			
	26347 5	P	P P		
	26394 5	P P	P		
	26389 5	P	P P		
	26311 5	P	PPP	PPP	
	26416 5	P	P		
	26411 5	P			
	26448 5	P			

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

Page 187 of 394

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL CLINICAL OBSERVATIONS

GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 5 P NO SIGNIFICANT CLINICAL OBSERVATIONS 26428 Ρ Ρ 26339 5 P 26406 5 P Ρ 26326 5 P 26377 5 P Ρ 26376 Ρ 5 P 26360 5 Ρ 26427 5 P Ρ 26443 5 P Ρ 26314 5 P 26436 5 P 26413 5 P 26356 5 P Ρ 26444 5 P 26452 5 P Ρ 26333 5 P 26393 5 P Ρ SCHEDULED EUTHANASIA; GESTATION DAY 20 26433 1 26383 1 26384 1 26349 1 26395 1 26405 1 26327 1 Р 26426 1 Ρ 26312 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE ______

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

PAGE 5

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 6 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

OBSERVATION	ANIMAL GR	OUP	GESTATIONAL DAY
SCHEDULED EUTHANASIA; GESTATION DAY 20	26368	1	P P
	26318	1	P
	26407	1	P
	26451	1	P
	26432	1	P
	26330	1	P
	26317	1	P
	26309	1	P
	26434	1	P
	26447	1	P
	26304	1	P
	26302	1	P
	26369	1	P
	26380	1	P
	26420	1	P
	26430	1	P
	26386	2	P
	26392	2	P
	26322	2	P
	26366	2	P
	26350	2	P
	26342	2	P
	26355	2	P
	26352	2	P
	26337	2	P
	26414	2	P
	26403	2	P

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

Page 189 of 394

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL CLINICAL OBSERVATIONS

PAGE 7

Ρ

GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 SCHEDULED EUTHANASIA; GESTATION DAY 20 Р Ρ 26388 3 Ρ Ρ Ρ

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 8 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

BSERVATION	ANIMAL GF	ROUP	GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	2 0
				_
CHEDULED EUTHANASIA; GESTATION DAY 20	26409	3		P
	26365			P
	26319	3		P
	26341	3		P
	26421	3		P
	26454	3		P
	26343	3		P
	26370	3		P
	26351	3		P
	26354	3		P
	26378	3		P
	26323	3		P
	26334	4		P
	26324	4		P
	26398	4		P
	26373	4		P
	26313	4		P
	26345	4		P
	26391	4		P
	26379	4		P
	26387	4		P
	26390	4		P
	26400	4		P
	26404	4		P
	26399	4		P
	26301	4		P
	26332	4		P

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS

GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 1 2

OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0

SCHEDULED EUTHANASIA; GESTATION DAY 20 26357 4 P

26357	4	
26396	4	
26353	4	
26372	4	
26408	4	
26415	4	
26325	4	
26431	4	
26306	4	
26425	4	
26382	5	
26347	5	
26394	5 5	
26389	5	
26311	5	
26416	5 5 5	
26411	5	
26448	5	
26428	5 5 5	
26339	5	
26406	5	
26326	5	
26377	5	
26376	5	
26360	5	
26427	5	
26443	5	

PAGE 9

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 10 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

OBSERVATION	ANIMAL G	ROUP	GESTATIONAL DAY	8 9 0
SCHEDULED EUTHANASIA; GESTATION DAY 20	26436	5		Р
	26413	5		P
	26356	5		P
	26444	5		P
	26333	5		P
	26393	5		P
FOUND DEAD	26314	5		P
	26452	5		P
WET YELLOW MATERIAL UROGENITAL AREA	26392	2	1 2 1 1 1	
	26337	2	2 2 2 2 1 1 1	
	26315	2	1 1	
	26336	2	1 1	
	26423	2	1	
	26358	3	2 3 2 2 3 3 2	
	26435	3	1	
	26316	3	1 1 1	
	26409	3	1	
	26343	3	1 1	
	26354	3	1	
	26323	3	1 1	
	26334	4	1	
	26324	4	1 1 1	
	26373	4	1 1	
	26379	4	1	
	26387	4	1 1 1	

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

Page 193 of 394

INDIVIDUAL CLINICAL OBSERVATIONS

GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 WET YELLOW MATERIAL UROGENITAL AREA 26400 4 2 2 2 1 26399 4 1 1 26301 4 26332 4 1 1 1 1 2 1 1 1 26357 4 26372 4 26431 4 1 1 26382 5 26311 5 2221 26326 5 1 1 26376 5 1 2 2 1 1 1 26443 5 1 26444 5 2 1 26452 5 1 26333 1 1 5 26393 5 1 1 26358 3 1 1 1 1 26357 4 2 WET YELLOW MATERIAL VENTRAL ABDOMINAL AREA HAIR LOSS LEFT HINDLIMB 26319 3 1 2 2 2 2 HAIR LOSS RIGHT FORELIMB 26327 1 1 1 1 26329 3 1 3

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

3

4 1

26424

26409

26313

______ 1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

2

1

PAGE 11

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 12 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

OBSERVATION	ANIMAL G	ROUP	GESTATIONAL DAY
HAIR LOSS RIGHT FORELIMB	26301	4	
	26325	4	
	26377	5	
	26427	5	5 1
HAIR LOSS LEFT FORELIMB	26327	1	
	26424	3	
	26313	4	4 1 1
DRIED YELLOW MATERIAL UROGENITAL AREA	26405	1	1 1
	26434	1	1
	26447	1	1 1
	26302	1	
	26392	2	
	26355	2	
	26337	2	
	26358	3	3 2 2 1 2 2
	26424	3	
	26435	3	
	26316	3	
	26354	3	
	26323	3	
	26324	4	
	26391	4	4 1 1
	26387	4	
	26400	4	4 1 2
	26404	4	4 1 1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

Page 195 of 394

PAGE 13

GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DRIED YELLOW MATERIAL UROGENITAL AREA 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 2 2 2 2 1 2 1 2 2 2 3 2 2 2 2 1 1 1 1 1 1 2 2 2 2 1 1 1 2 26393 5 1 2 HAIR LOSS VENTRAL ABDOMINAL AREA 1 2 1 1 1 2 3 3 3 3 1 2 2 1 1 LACERATION LEFT LATERAL ABDOMINAL AREA P WET RED MATERIAL UROGENITAL AREA

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE ______

PAGE 14 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

BSERVATION	ANIMAL G	ROUP	GESTATIONAL DAY
ET RED MATERIAL UROGENITAL AREA	26323	3	1
	26324	4	1
	26398	4	_ 1
	26313	4	1
	26391	4	1
	26387	4	1
	26390	4	1
	26396	4	1
	26325	4	2 1
	26425	4	
	26382	5	3
	26389	5	1
	26311	5	1
	26448	5	1
	26428	5	
	26339	5	1 1
	26406	5	2
	26377	5	1
	26360	5	1
	26443	5	2 1
	26314	5	2 2 2
	26356	5	1
	26452	5	1 3
	26333	5	<u>-</u> 1
	26393	5	1
RIED RED MATERIAL UROGENITAL AREA	26327	1	1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DRIED RED MATERIAL UROGENITAL AREA 1

PAGE 15

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

PAGE 16 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS

OBSERVATION	ANIMAL GROU	GESTATIONAL DAY
DRIED RED MATERIAL UROGENITAL AREA	26306	1 1 1
		5
	26347	1 1 1
	26394	5 1 1
	26389	5 1 1 1 2 1
	26311	5 1
		5 1 1 1
		5 1 1 1
		5 1 1
		5 2 1 1 1 1
	26406	5 1 1
	26326	5 2 1 1 1
	26377	5 1 1 1
		5 1 1 1 1 1 2
		5 1
		5 1 1 2
	26314	5 1 2 1
	26436	5 1 1 2
		5 1
		5 1 1 1 2
		5 1 2
		5 1 1
		5 1 1
HAIR LOSS DORSAL HEAD		1 1
	26403	2 1
	26343	1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

Page 198 of 394

TABLE A1 (DAILY EXAMINATIONS) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 17 PROJECT NO.:WIL-402016 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

OBSERVATION	ANIMAL GRO	GESTATIONAL DAY	
HAIR LOSS DORSAL HEAD	26400	4 1	
HAIR LOSS FACIAL AREA	26315 26343	2 3 1 1	
BODY PALE	26389 26326 26314 26452	5 P P 5 P 5 P	
DRIED RED MATERIAL AROUND NOSE	26433 26383 26384 26349 26395 26405 26327 26426 26312 26368 26318 26407 26451 26432 26330 26317 26309	1	

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 OBSERVATION DRIED RED MATERIAL AROUND NOSE 26434 1 1 2 2 2 1 1 1 1 26447 1 1 1 2 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 26304 1 26302 1 2 2 2 2 2 2 1 1 1 1 26369 1 26380 1 26420 11 1112121 1 1 1 1 1 1 2 2 2 2 1 1 1 1 1 1 1 1 2 1 1 2 1 26430 1 1 3 3 3 3 2 3 3 3 3 2 1 1 1 1 1 1 1 2 26386 2 2 2 2 2 2 2 1 2 1 1 1 1 1 1 1 26392 2 1 1 1 26322 2 26366 2 2 2 2 2 2 2 2 1 1 1 1 1 2 2 2 2 3 2 2 3 26350 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 112211111 1 1 111 26342 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 26355 2 26352 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 1 2 1 26337 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 26414 2 2 2 1 2 1 1 1 1 1 1 1 1 1 1 1 26403 2 2 1 1 1 1 1 1 1 1 1 1 1 1 26305 2 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 26315 2 2 2 1 1 1 1 1 1 26336 2 2 2 2 2 1 2 1 1 1 1 1 1 1 1 1 121111 11 11 1 111 26331 2 26344 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 26371 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

PAGE 19 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 OBSERVATION DRIED RED MATERIAL AROUND NOSE 26439 2 26442 2 26303 1 2 2 2 2 1 1 1 1 1 1 2 26346 26438 26423 1 1 2 1 1 1 1 1 1 1 1 2 1 1 2 1 1 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 2 26328 3 1 1 1 2 1 2 1 1 1 1 2 2 26402 3 26358 3 2 2 2 2 2 1 1 1 1 26388 3 2 2 2 2 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 26329 3 26320 3 1111112 11 111111 1 26424 3 1111111 11 111 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 26435 3 1111211 1 111 1 1 26419 3 26437 3 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 26397 3 2 2 2 2 2 1 1 1 1 1 1 1 1 1 26385 3 1 1 2 1 1 1 1 1 1 1 1 26316 3 2 1 2 2 2 2 1 2 2 1 1 1 1 1 1 1 1 26409 3 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 26365 3 1 1 2 2 2 2 2 2 2 2 1 1 1 3 1 2 1 1 26319 3 2 1 2 2 1 2 1 1 1 1 1 1 1 11111111 1 11 11 11 26341 3 26421 3 1 2 2 2 2 1 1 1 1 1 1 1 2 1 26454 3 1 2 2 2 2 3 1 1 1 2 1 1 1 1 1 1 3 11111 11 1 1 1111 26343

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

3 12222111 111 1 11 11

26370

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 OBSERVATION 3 DRIED RED MATERIAL AROUND NOSE 26351 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 26354 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 3 26378 3 26323 3 2 2 3 3 3 1 3 3 2 1 2 1 1 2 1 2 1 2 1 26334 4 1 2 1 1 1 1 1 1 1 26324 4 2 2 2 2 2 2 2 2 1 1 1 1 1 1 2 1 1 1 2 2 26398 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 4 26373 4 2 3 2 2 1 2 2 2 1 2 1 2 1 1 2 1 1 1 1 2 26313 4 1 2 1 2 1 2 1 2 1 26345 1 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 4 26391 1 2 2 2 2 2 2 1 1 2 1 1 1 2 1 1 2 2 1 4 26379 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 1 4 2 2 2 1 2 1 2 1 1 1 1 1 1 1 1 1 26387 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 26390 4 26400 4 2 2 2 2 1 1 2 1 1 1 1 1 1 1 1 2 1 26404 4 1 2 2 2 2 2 2 2 3 2 3 1 2 1 1 2 2 2 2 2 26399 4 26301 4 1 2 2 2 2 1 1 1 1 1 1 1 1 1 26332 122111 1 1111 11111 26357 4 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 2 26396 4 1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 26353 4 2 2 2 2 2 1 1 1 1 1 1 1 1 1 26372 4 2 2 1 1 1 1 1 1 1 26408 4 2 2 2 2 2 2 3 2 2 1 1 1 1 1 2 2 2 1 1 2 26415 4 2 2 2 2 2 2 1 2 2 2 2 2 1 1 1 2 2 2 2 4 26325 1 2 2 2 1 1 1 1 2 1 2 1 1 1 1 26431 4 2 2 2 2 2 2 1 1 1 1 1 1 1 3 1 1 1

PAGE 20

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS ______ GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 OBSERVATION DRIED RED MATERIAL AROUND NOSE 26306 4 26425 4 26382 2 2 2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 2 5 2 2 2 2 2 2 2 2 1 1 2 2 3 1 1 2 2 2 26347 5 26394 5 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 26389 5 26311 5 26416 5 26411 5 26448 5 2 2 2 2 2 3 2 3 3 2 2 2 1 1 1 1 1 1 1 26428 5 1111111 11 111 111 111 26339 5 2 2 2 2 2 2 2 2 2 1 2 1 1 1 2 1 26406 5 2 1 1 1 1 1 1 1 2 1 1 1 1 1 1 1 1 121222112 2111111112 26326 5 26377 5 11211111 11 11 111 26376 5 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 26360 5 1 2 2 2 2 2 3 3 3 3 3 1 1 1 1 1 1 1 2 2 26427 5 1 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 2 1 1 26443 5 1 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 26314 5 1 1 2 2 2 2 3 1 1 2 1 1 1 1 2 2 26436 5 2 2 2 2 2 3 2 2 1 2 2 2 1 1 1 2 2 2 2 26413 5 1 2 2 1 2 1 1 1 2 1 2 1 1 1 1 1 1 2 26356 5 1 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 2 1 26444 5 2 2 2 2 2 3 3 3 3 3 1 2 2 1 1 2 2 2 3 5 26452 2 2 2 3 1 1 2 1 1 1 2 2 5 26333 2 2 2 2 3 3 2 1 2 1 1 1 1 1 2 2 2 1 1 1

PAGE 21

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

5

111 11 12 1 1 2 21

26393

SPONSOR: AMERICAN PETROLEUM

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 22

INDIVIDUAL CLINICAL OBSERVATIONS

GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 1 1 DRIED RED MATERIAL RIGHT EYE 26433 26383 26349 26395 1 1 2 2 1 1 1 1 26405 1 26327 1 1 1 1 1 1 1 1 1 1 1 1 1 1 26426 1 26312 1 26368 1 1 1 1 2 1 1 1 26318 1 2 2 2 2 2 1 1 26407 26451 1 11 211111111 1 26432 1 1 1 1 1 1 1 1 1 111111111 26330 1 26317 1 11 11 26309 1 1 1 1 1 26434 1 1 1 1 1 1 26304 1 1 1 1 26302 1 1 1 1 1 1 1 1 1 26369 1 1 1 1 1 26380 1 11111 1 1 26420 1 1 1 1 26430 1 111221 11 1 1 11 26386 2 1 11 11 1 1 1 1 1 26392 2 1 2 1 1 1 1 2 1 1 26322 2 1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

26366

2

1111111 11 1 1

SPONSOR: AMERICAN PETROLEUM

TABLE A1 (DAILY EXAMINATIONS)

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 23

INDIVIDUAL CLINICAL OBSERVATIONS

DBSERVATION	ANIMAL GROU		GEST							8				1 2									
DRIED RED MATERIAL RIGHT EYE	26350	2		1											1		1						
	26342	2			1					1													
	26355	2		1	1	1	1	1	1									1					
	26352	2			1		1																
	26337	2	1	1	1	1	2 :	2	1		1	1		1									
	26414	2	1	1	1	1	1	1	1														
	26403	2	1	1	1	1	1	1	1		1	1		1		1							1
	26305	2			1	1								1									
	26315	2	2	2	1	1	1	1	1		1		1	1	1								
	26336	2	1	2	2	2	1	1	1 :	1	1		1										
	26331	2	1	1	2	2	2	1	1														
	26344	2	2	2	2	2	2	2	2	2	2	1	2	1	2	1	2	1	. 1	L		1	1
	26453	2			1														. 1				
	26418	2	1	2																			1
	26371	2		1																			
	26439	2		1		1	1		1 :	1		1	1	1									
	26303	2		_	_	_	_			_		_	_	_								1	
	26346	2	2		2	2	2	2	1 .	2	2	2	1		1	1	1	1	. 1		1	1	1
	26438	2	1		٠.		۷.	_		٠ .	_	2	_		_	_	_			-	_	_	_
	26328	3		1	1	1	1 .	1	1 -	1									1				
	26402	3		1			Τ.	_	Τ.	_										_			
	26402	3		1			1 .	1	1 .	1	1												
								Τ	Ι.	Τ.	Τ.												
	26320	3	-		1			-	-														
	26424	3	_	1	_	_	1	_	_														
	26435	3		1			1			_		1											
	26419	3		1																			
	26437	3				1	1		1		1	1											

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 24
SPONSOR:AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS

BSERVATION	ANIMAL GROUP	GESTATIONAL DAY
PRIED RED MATERIAL RIGHT EYE	26397 3	111 1 11
KIED KED MAIEKIAD KIGHI EIE	26385 3	1 1 1 1 1 1
	26316 3	1111 1 11 11
	26409 3	11 1 1
	26365 3	1111 1
	26319 3	11111 11 1
	26341 3	1 1 1 1
	26421 3	1 2 2 2 2 2 1 1
	26454 3	1 1 1 1 1 1
	26343 3	11111 1 1111
	26370 3	
	26351 3	112121 2 1111 1 122
	26354 3	1 1 1
	26378 3	1 1 2 1 1 1 1 1 1 1 1
	26323 3	2 2 1 1 1 1 1 1 1 1 2 1 1 1 2 1 2 1
	26334 4	1 1 1 1 1 1
	26398 4	1 1 1
	26373 4	2 2 2 1 1 1 1 1 1 1 1
	26313 4	1 1 1
	26345 4	1 1 1 1 1 1 1 1 1 1
	26391 4	111111 1 1111 11
	26379 4	1 1
	26387 4	1 1 2 1 1 1 1 1 1
	26390 4	1 1 1 1
	26400 4	1 1 1 2 1
	26399 4	1 1 1 1 1 1 1 1 1 2 2 1 1
	26301 4	1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DRIED RED MATERIAL RIGHT EYE 26332 4 1 2 1 1 1 1 1 1 1 111111 111 26357 4 11111 11 1 1 1 1 1 1 1 26396 4 26353 26372 26408 4 1 1 1 1 26415 1 1 1 4 1 4 1 2 2 2 2 2 1 1 1 26325 1 111 1 2111 11 22 26431 4 2 2 2 1 1 26306 2 2 4 26382 5 1 1 1 1 1 1 1 1 1 1 1 1 1 26347 5 2 2 2 2 1 2 2 1 1 1 1 26394 5 1111111 1 26389 5 26311 5 1 1 1 1 26416 5 1 1 1 1 1 1 1 1 26448 5 1 1 1 1 1 26428 5 1 1 1 26339 5 1 26406 5 1 1 1 1 1 1 1 1 1 1 1 1 26326 5 1 2 2 2 2 1 1 1 1 26377 5 1 2 1 2 1 1 1 1 1 1 1 1 1 26376 5 1 1 2 1 2 1 1 1 1 1 1 1 1 1 26360 5 11111 1 1 11 26427 5 1 1 1 1 1 1 1 1 1

PAGE 25

1

1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE ______

26443 5 1 1 2 2 2 1 1 1 1

Page 208 of 394

SPONSOR: AMERICAN PETROLEUM

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

OBSERVATION	ANIMAL GROU		GES							8	9										0	
DRIED RED MATERIAL RIGHT EYE	26314	5				1	1					1										
		5										_									1	
		5		1	1	1	1					1										
		5		1				1		1			1					1			1	
		5		1	_	1	_	_		_		_	_					_	•		_	
		5	_		2	2		2		1	1		1									
		5	1	1			1		1	_	1	1	2	1	1	1	1				1	
		5		2			ī		_						1				1	2	1	
	20030	_	_	_	_	_	_	_		_	_	_	_	_	_	_	_	_	_	_	_	
DRIED RED MATERIAL LEFT EYE	26433	1				1	1	1	1	1												
	26383								1		1	1	1		1	2	2		1	1		
	26349						1		1		_	_	_		_	_	_		1	_		
		1			1	1	_	1	1		1	1		1					1			
	26405			1					1			_		_			1		_			
		1		1			1	_	_	_	_			1	1	1	1					
		1					_	1	1		1	1			_							
		1	1	1							_	_		2		_						
	26368	1	_	_	_	_	_	_	_					1								
		1			1	2	1	1														
		1	2						1	1	1	1	1	1	1							
		1				1			_	_	_	1										
		1		1	1	_	_	_	1	1	1	1	2	1	1							
		1	1	1			_	_	1	_	_	_	_	_		1						
					1	Τ.			Τ							Т						
	26434 26304	1				1	1															
					Τ					1		1	1			-						
		1	-	-	1		1	-		1			1			1			-			
	26369	1	Τ	Τ	Τ	Τ	Τ	Τ	1	Τ		Τ	1						1			

INDIVIDUAL CLINICAL OBSERVATIONS

PAGE 26

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

Page 209 of 394

SPONSOR: AMERICAN PETROLEUM

TABLE A1 (DAILY EXAMINATIONS)

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 27

INDIVIDUAL CLINICAL OBSERVATIONS

		GESTATIONAL DAY
DBSERVATION	ANIMAL GROUP	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
RIED RED MATERIAL LEFT EYE	26380 1	1 1 1 1 1 1
	26420 1	1 1 1
	26430 1	1 1 2 2 1 1 1 1 1 1
	26386 2	1 11111 1 111
	26392 2	1 2 1 1 1 1 2 1 2 1 1 1 1
	26322 2	1 1
	26366 2	1 1 1 1 1 1 1 1 1 1
	26350 2	1 1 1 1 1
	26342 2	1 1 1 1 1
	26355 2	1 1 1 1 1 1 1 1 1
	26352 2	1 11
	26337 2	1 1 1 1 2 2 1 1 1 1
	26414 2	1 1 1 1 1 1
	26403 2	1 11111 1 1
	26305 2	1
	26315 2	2 2 1 1 1 1 1
	26336 2	1 2 2 2 1 2 1 1 1
	26331 2	1 1 2 2 2 1
	26344 2	1 1 1 2 1 1 1 1 1 1 1
	26453 2	1 1 1 1 1 1 1 1 1
	26418 2	2 2 2 1 1 1
	26371 2	1 1 1 1
	26439 2	1 1 1 1 1 1 1 1 1
	26303 2	1 1
	26346 2	2 2 2 2 2 2 2 2 2 1 1 1 1 1 1 1 1
	26438 2	11
	26328 3	1 1 1 1 1 1

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 3 DRIED RED MATERIAL LEFT EYE 26402 1 1 1 1 1 1 1 1 1 1 1 3 26358 3 26320 111 1 3 111111 26424 1 26435 3 1 1 1 1 1 1 1 1 1 2 1 1 1 1 26419 3 1111111 26437 3 1 1 1 1 26397 3 3 1 1 1 1 1 1 26385 3 1 1 1 1 1 1 1 1 26316 3 26409 1 1 26365 3 11111 1 26319 3 1 1 1 1 1 1 26341 3 1 1 1 1 26421 3 1 2 2 2 2 26454 3 1 1 1 1 26343 3 1 1 1 1 26370 3 1 1 1 1 1 1 1 1 1 1 1 1 26351 3 1 1 2 1 2 1 1 2 1 1 1 1 1 1 1 2 2 26354 3 1 1 26378 3 1 1 2 1 1 1 1 1 1 26323 3 2 2 1 1 1 3 1 1 1 1 1 1 1 1 2 1 1 1 26334 4 1 1 1 1 1 1 26398 4 1 1 1 26373 4 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 26313 4

PAGE 28

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

4

1 1 1

26345

1 0 MG/VG/DAV GUAM 2 0 MG/VG/DAV VDU 2 F MG/VG/DAV 4 0F MG/VG/DAV F F0 MG/VG/DAV

PAGE 29 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 4 111111 1 111 1 DRIED RED MATERIAL LEFT EYE 26391 26379 1 1 4 26387 1 1 1 1 1 4 1 1 11111 11 4 1112 26390 26400 4 111112111 2211 26399 1 1 1 1 1 26301 4 26332 4 2 1 1 4 111111 1 11 26357 26396 26353 26372 4 2 1 2 1 1 2 2 1 1 2 1 1 26408 1 1 1 1 26415 4 1 1 1 26325 4 1 2 2 2 2 1 1

26431 4 1 1 1 1 1 1 1 2 1 1 1 1 2 2

1 2 2 2 2 1 1

1 1 1 1

1 2 1 1 1 1 1 1

 $1\ 1\ 1\ 1\ 1\ 1$

26416 5 1 1 1 1 1 1 1 1

26394 5 2 2 2 2 1 2 2

26311 5 1 1 1 1 1

26448 5 1 1 1 1 1 1 5 26428 1

26306 4

26425 4 26382 5

26347 5

26389 5

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

PAGE 30 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

DBSERVATION	λΝΤΜλΤ. ΩΦ		GESTATIONAL DAY
DESERVATION	ANTHALIGN		
DRIED RED MATERIAL LEFT EYE	26339	5	1 1
	26406	5	1 11111 11 11 1
	26326	5	1 2 2 2 2 1 1 1
	26377	5	1 2 1
	26376	5	1 1 2 1 2 1 1 1
	26360	5	11111 1 11
	26427	5	111111111111111
	26443	5	1 2 2 2 2 1 1 1 1 1
	26314	5	1 1 1
	26413	5	1 1 1
	26356	5	1 1 1 1 1 1 1 1
	26444	5	1 1 1 1 1
	26452	5	1 2 2 2 1 1 1
	26333	5	11111111111111
	26393	5	121 11 122111111 21
WET RED MATERIAL AROUND NOSE	26395	1	1
	26327	1	1
	26346	2	1
	26385	3	1
	26373	4	1
	26372	4	1
WET RED MATERIAL RIGHT EYE	26346	2	1 1
	26316	3	1 1
	26372	4	1 1
VET RED MATERIAL LEFT EYE	26346	2	1 1

Page 213 of 394

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL CLINICAL OBSERVATIONS

PAGE 31

GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 3 4 1 1 WET RED MATERIAL LEFT EYE 26316 26372 HAIR LOSS AROUND RIGHT EYE 26312 1 26304 1 26315 26344 1 26346 2 2 2 26358 3 26343 3 1 26379 4 1 1 1 1 26372 4 HAIR LOSS AROUND LEFT EYE 26315 2 1 26418 2 1 26346 26358 26379 26372 1 1 1 DECREASED DEFECATION 26384 1 P 26349 1 PPPP

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

1

1

1

1

1

Ρ

Ρ

Ρ

P

Ρ

PPP P

PΡ P P P

26395

26405

26327

26426

26312

SPONSOR: AMERICAN PETROLEUM

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DECREASED DEFECATION 26318 1 P P PP PP PPP PP P 26407 1 1 26451 P P 26432 1 P P 26330 1 PΡ PPP 26317 1 P P P 26309 PΡ 1 P PPP PP 26434 1 P 26447 1 26304 PPP 1 26302 PΡ 1 26369 1 P 26380 1 PP PPPPP 26420 P P 1 26386 P P P 2 26392 2 P P P P P P P 26322 26366 PΡ PP PP 26350 PΡ 26355 2 PΡ 26352 2 P P P P P 26337 2 P P P P 26414 2 PΡ 26403 2 P 26315 PPP PPP 2 P 2 26336 Ρ P P 26331 2 Ρ

INDIVIDUAL CLINICAL OBSERVATIONS

PAGE 32

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DECREASED DEFECATION 26344 P P P P 2 26418 2 PΡ P PPP PPP 26371 2 P 26439 2 PΡ PΡ 26442 2 P P P 26303 Ρ P P 26346 2 P P P P P P P 26438 2 P PPPP 26423 26328 3 P P P P P 26402 3 PPPP P 26358 3 26388 3 PP PPP P 26329 PΡ 3 26320 PP P P P P 3 26424 3 P P P 26435 3 P PΡ 26419 3 PPPP PPP P 26437 3 P 26397 3 PΡ PΡ 26385 3 Ρ 26316 3 P PPP PP 26409 P P P P P P 3 3 26365 PΡ P P P 3 26319 P P

PAGE 33

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

26341

26421

3

3

Ρ

PP P

Ρ

ONAD CODE. I - INDUM I - OHOM 2 - NODERHE O - OHOM

INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DECREASED DEFECATION 26454 3 P 3 PPP P 26343 3 26370 P P 26351 3 Ρ P P P PPP PP 26354 3 26378 P PPP 3 26323 3 P P PΡ P 26334 4 26324 4 Ρ 26398 P P P 4 Ρ 26373 P P P 4 26313 4 P Ρ PPP 26345 P 26391 4 P P P P P 26379 4 P P P P P 26387 4 P P P P P PP P PP 26390 4 26400 4 PΡ PPP 26404 PΡ P P P 26399 4 PΡ 26301 4 P PΡ PΡ PPP 26332 4 P P 26357 4 PΡ 26396 4 PPP P P 26353 4 PPP PP 4 26372 PΡ Ρ

PAGE 34

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

4

PΡ

P P P

26408

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM GESTATIONAL DAY 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 DECREASED DEFECATION 26325 P P P 4 26431 4 PΡ 26306 4 P P P P 26425 4 Ρ 26382 5 PPP PPP P 26347 5 PΡ PPP 26394 PΡ 5 P PP P P P P 26389 5 26311 PΡ 5 PΡ PΡ 26416 5 PΡ 26411 PΡ PPP PPP 5 PP P PPP 26448 5 26428 5 PP P PP 26339 PΡ PΡ 5 26406 PP P PPP PPP 5 26326 5 PΡ PΡ PP P PPP P 26377 5 26376 5 PΡ P 26360 5 PP P PPP P 26427 5 P P P 26443 5 PP PPP P 26314 5 PPPP PP P 26436 5 PPP PPP PP 26413 5 PPPP PPP PΡ 5 26356 PPPP PPP PPP 26444 5 P P

PAGE 35

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

5 PPP PPP P

26452

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

Page 218 of 394

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 36 INDIVIDUAL CLINICAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

		GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2
OBSERVATION	ANIMAL GRO	UP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0
DECREASED DEFECATION	26333 26393	5
WET RED VAGINAL DISCHARGE	26385	3 P
LEFT UPPER INCISOR MISSING	26430	1 P
RIGHT UPPER INCISOR BROKEN	26430	1 P
GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 =	SEVERE	
1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DA	AY 4- 2	5 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A1 (DAILY EXAMINATIONS) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL CLINICAL OBSERVATIONS

GESTATIONAL DAY 1 1 1 1 1 1 1 1 1 2 OBSERVATION ANIMAL GROUP 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 ANIMAL FOUND WITHOUT COLLAR ON Ρ Ρ Ρ P P P Ρ Ρ Ρ Ρ Ρ Ρ

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

Ρ

Ρ

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

PCOv3.13 12/16/2011

PAGE 37

TABLE A2 (AT TIME OF DOSING)

PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 1 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS FEMALES

		GD							1	1 1	1	1 1	1	1 1	1	
OBSERVATION	ANIMAL	~-	0 1													
RMAL																
NO SIGNIFICANT CLINICAL OBSERVATIONS	26433	1	PΡ	P P	Ρ	P P	P 1	P P	Ρ.	PР	P	PΕ	P	PΕ	P P	
	26383	1	PΡ	PР	Ρ	P P	P 1	P P	Ρ.	P P	P	PΕ	P	PΕ	P	
	26384	1	PΡ	PР	Ρ	PР	P 1	P P	-	P P	P	PΕ	P	P F	P	
	26349	1	PΡ	PР	Ρ	P P	P 1	P P	-	P P	-	PΕ	P	PΕ	-	
	26395	1		PР	Ρ	P P		P P		P P	-	PΕ	P		P	
	26405	1		PР	Ρ	PР	P 1			P P	P	PΕ	P		P	
	26327	1	PΡ	P P	Ρ	P P	P 1	P P	Ρ.	PР	P	PΕ	P	PΕ	P P	
	26426	1	PΡ	P P	Ρ	P P	P 1	P P	Ρ.	PР	P	PΕ	P	PΕ	P P	
	26312	1	PΡ	P P	Ρ	P P	P 1	P P	Ρ.	PР	P	PΕ	P	PΕ	P	
	26368	1	PΡ	P P	Ρ	P P	P 1	P P	Ρ.	PР	P	PΕ	P	PΕ	P	
	26318	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	Ρ.	PР	P	PΕ	P	PΕ	P P	
	26407	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	Ρ.	PР	P	PΕ	P	PΕ	P P	
	26451	1	PΡ	PΡ	P	P P	P 1	P P	P	PР	P	PΕ	P	PΕ	P P	
	26432	1	PΡ	PΡ	P	P P	P 1	P P	P	PР	P	PΕ	P	PΕ	P P	
	26330	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	Ρ.	PР	P	PΕ	P	PΕ	P P	
	26317	1	PΡ	PΡ	P	P P	P 1	P P	P	PР	P	PΕ	P	PΕ	P P	
	26309	1	PΡ	PΡ	P	P P	P 1	P P	P	PР	P	PΕ	P	PΕ	P P	
	26434	1	PΡ	PΡ	P	P P	P 1	P P	P	PР	P	PΕ	P	PΕ	P P	
	26447	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	P	PР	P	PΕ	P	PΕ	P P	
	26304	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	P	PР	P	PΕ	P	PΕ	P P	
	26302	1	PΡ	PΡ	Ρ	PР	P 1	P P	P	PР	P	PΕ	P	PΕ	P	
	26369	1	PΡ	PΡ	P	PР	P 1	P P	Ρ:	PР	P	PΕ	P	PΕ	P	
	26380	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	P	PР	P	PΕ	P	PΕ	P P	
	26420	1	PΡ	PΡ	Ρ	PР	P 1	PΡ	P	PР	P	PΕ	P	PΕ	P P	
	26430	1	PΡ	PΡ	P	PР	P 1	P P	Ρ:	P P	P	PΕ	P	PΕ	P	
	26386	2	PΡ	PΡ	Ρ	PР	P 1	PΡ	P	PР	P	PΕ	P	PΕ	P P	
	26392	2	PΡ	PР	Р	PР	P 1	P P	P	PР	P	PΕ	P	PΕ	P	
	26322	2	PΡ	PΡ	Р	PР	P 1	P P	P	P P	P	PΕ	P	PΕ	P	
	26366	2	PΡ	PΡ	Р	PР	P 1	P P	P	P P	P	PΕ	P	PΕ	P	
	26350	2	PΡ	P P	Р	P P	P 1	P P	P	P P	P	P F	P	P F	P	
-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5	MC / VC / DAY						5				7.37					

TABLE A2 (AT TIME OF DOSING)

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

- - - F E M A L E S - - -

OBSERVATION	GD 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 9
NO SIGNIFICANT CLINICAL OBSERVATIONS	26342 2 PPPPPPPPPPPPPPP	, P
	26355 2 PPPPPPPPPPPPPPP	=
	26352 2 PPPPPPPPPPPPPPP	=
	26337 2 PPPPPPPPPPPPPPP	P P
	26414 2 PPPPPPPPPPPPPPP	P P
	26403 2 PPPPPPPPPPPPPPP	P P
	26305 2 PPPPPPPPPPPPPPP	P P
	26315 2 PPPPPPPPPPPPPPP	P P
	26336 2 PPPPPPPPPPPPPPP	P P
	26331 2 PPPPPPPPPPPPPPP	P P
	26344 2 PPPPPPPPPPPPPPP	P
	26453 2 PPPPPPPPPPPPPPP	P P
	26418 2 PPPPPPPPPPPPPPP	Р
	26371 2 P P P P P P P P P P P P P P P P	
	26439 2 PPPPPPPPPPPPPPP	
	26442 2 P P P P P P P P P P P P P P P P P	
	26303 2 P P P P P P P P P P P P P P P P P P	
	26346 2 P P P P P P P P P P P P P P P P P P	
	26438 2 PPPPPPPPPPPPPPPPP	
	26423 2 PPPPPPPPPPPPPPPPP	
	20423 2 PPPPPPPPPPPPPP	' P
	26328 3 PPPPPPPPPPPPPPPP	P
	26402 3 PPPPPPPPPPPPPPP	P P
	26358 3 PPPPPPPPPPPPPPP	P P
	26388 3 PPPPPPPPPPPPPPP	P
	26329 3 PPPPPPPPPPPPPPP	P P
	26320 3 PPPPPPPPPPPPPPPP	Р
	26424 3 P P P P P P P P P P P P P P P P P P	_
	26435 3 PPPPPPPPPPPPPPPP	
	26419 3 P P P P P P P P P P P P P P P P P P	
	26437 3 PPPPPPPPPPPPPPPPP	_
	26397 3 PPPPPPPPPPPPPPPPP	
	26385 3 P P P P P P P P P P P P P P P P P P	
		r

PAGE 2

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A2 (AT TIME OF DOSING) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

- - - F E M A L E S - - -

OBSERVATION	GD	
NO SIGNIFICANT CLINICAL OBSERVATIONS	26316 3 P P P P P P P P P P P P P P P P P P	
	26409 3 PPPPPPPPPPPPPPPPPP	
	26365 3 PPPPPPPPPPPPPPPP	
	26319 3 PPPPPPPPPPPPPPPP	
	26341 3 PPPPPPPPPPPPPPPP	
	26421 3 PPPPPPPPPPPPPPPP	
	26454 3 PPPPPPPPPPPPPPPP	
	26343 3 PPPPPPPPPPPPPPPP	
	26370 3 PPPPPPPPPPPPPPPPP	
	26351 3 PPPPPPPPPPPPPPPPP	
	26354 3 PPPPPPPPPPPPPPPP	
	26378 3 PPPPPPPPPPPPPPPPP	
	26323 3 PPPPPPPPPPPPPPPPPPP	
	26334 4 PPPPPPPPPPPPPPPPP	
	26324 4 PPPPPPPPPPPPPPPPP	
	26398	
	26373 4 PPPPPPPPPPPPPPPP	
	26313 4 РРРРРРРРРРРРРРРРР	
	26345 4 PPPPPPPPPPPPPPPP	
	26391 4 РРРРРРРРРРРРРРРРР	
	26379 4 PPPPPPPPPPPPPPPP	
	26387 4 PPPPPPPPPPPPPPPPP	
	26390 4 РРРРРРРРРРРРРРРРР	
	26400 4 PPPPPPPPPPPPPPPP	
	26404 4 PPPPPPPPPPPPPPPP	
	26399 4 РРРРРРРРРРРРРРРРР	
	26301 4 PPPPPPPPPPPPPPPPP	
	26332 4 PPPPPPPPPPPPPPPPP	
	26357 4 PPPPPPPPPPPPPPPPP	
	26396 4 PPPPPPPPPPPPPPPP	
	26353 4 PPPPPPPPPPPPPPPPP	
	26372 4 PPPPPPPPPPPPPPPPPPP	

PAGE 3

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A2 (AT TIME OF DOSING) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

	FEMA	LE	S
		GD	1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
NO SIGNIFICANT CLINICAL OBSERVATIONS		4	P
		4	PPPPPPPPPPPPPPP
	26325	4	P
	26431	4	PPPPPPPPPPPPPPP
	26306	4	PPPPPPPPPPPPPPP
	26425	4	P
	26382	5	P
	26347	5	P
	26394	5	P
	26389	5	P
	26311	5	P
	26416	5	P
	26411	5	P
	26448	5	P
	26428	5	P
	26339	5	P
	26406	5	P
	26326	5	P
	26377	5	P
	26376	5	P
	26360	5	P
	26427	5	P
	26443	5	P
	26314	5	PPPPPPPPPPPPPP
	26436	5	P
	26413	5	P
	26356	5	PPPPPPPPPPPPPPP
	26444	5	P
	26452	5	PPPPPPPPPPPPP
	26333	5	PPPPPPPPPPPPPPP
	26393	5	P

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

PCOPDv1.04 12/16/2011

PAGE 4

TABLE A3 (1-2 HOURS POST-DOSING)

RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS FEMALES

PAGE 1

		GD									1 :	1 1	1	1	1	1 1	1	1	
DBSERVATION	ANIMAL		0	1 2	3	4	5	6 7	8									_	
MAL				_													_		
O SIGNIFICANT CLINICAL OBSERVATIONS	26433	1	Ρ	P P	P	Ρ	Ρ.		P					Ρ	Ρ.	PΕ	P P	Ρ	
	26383	1	Ρ	P P	P	Ρ	Ρ.	P P	_			PΕ	_	Ρ	Ρ.	PΕ	P P	P	
	26384	1	Р	P P	P	Ρ	-	P P	-	-		P F	-	Ρ	Ρ.	PΕ	P P	-	
	26349	1	Ρ		P	Ρ	-	PΡ	-	_		P F	-	-	P	PΕ	P P	-	
	26395	1	Ρ	P P	P	Ρ	Ρ.	PΡ	P	Ρ		P F	-	Ρ	Ρ.	ΡĒ	P P	P	
	26405	1	P	P P	P	Ρ	Ρ.	ΡP	P	Ρ	P 1	ΡF	P P	Ρ	Ρ:	ΡI	? P	P	
	26327	1	Ρ	P P	P	Ρ	Ρ:	PΡ	P	Ρ	P 1	ΡF	P	Ρ	Ρ:	PΕ	? P	P	
	26426	1	Ρ	P P	P	Ρ	Ρ:	PΡ	P	Ρ	P 1	ΡF	P	Ρ	Ρ:	PΕ	? P	P	
	26312	1	P	P P	P	Ρ	Ρ:	ΡF	P	Ρ	P 1	ΡF	P P	Ρ	Р:	ΡI	? P	P	
	26368	1	Ρ	PР	P	Ρ	Ρ :	PΕ	P	Ρ	P 1	ΡF	P	Ρ	Р:	PΕ	P P	P	
	26318	1	P	P P	P	Ρ	Р:	PΡ	P	Ρ	P 1	ΡF	P	Ρ	P :	PΕ	P P	P	
	26407	1	Ρ	PР	P	Ρ	Р:	PΡ	P	Ρ	P 1	PΕ	P	Ρ	Р:	PΕ	P P	P	
	26451	1	P	P P	P	Ρ	Р :	PΕ	P	Ρ	P 1	PΕ	P	Ρ	Р :	PΕ	P	P	
	26432	1	Р	PР	P	Ρ	P	PΕ	P	Ρ	P 1	PΕ	P	Ρ	Р :	PΕ	P	P	
	26330	1	Р	PР	P	Ρ	P	PΕ	P	Ρ	P 1	PΕ	P	Ρ	Р :	PΕ	P	P	
	26317	1	Р	P P	Р	P	P	PP	Р	P	P 1	PF	Р	P	P ·	PI	рρ	P	
	26309	1	P	P P	P	P	P	PP	P	P	PI	PF	P	P	P	PI	. <u>-</u>	P	
	26434	1	P	P P	P	P	P :	PF	P	P	P	PE	D D	P	P	PI	 D D	P	
	26447	1	D	D D	D	D	D :	PF	P			PE	_	Þ	D :	D I	. <u>.</u>	P	
	26304	1	P	D D	P	P	P	PF	-	_		PE	-	-	P	D I	-	P	
	26302	1	P	PP	-	-	-		P				_	P	D :	DI	D D	_	
	26369	1	P		_	D.	ъ.	PF				PE		D.	D :	D 1		P	
	26380	1	P D	P P	P	P	P.	P F	-	_		PE	_	P	P.	P 1	י ד	P	
	26420		P D	P P	ם ו	P	P.	PP				PF		P	P.	P 1	P	P	
	26430	1 1	P	P P	P	P	P	P F	-	_	PI		-	-	P	PI	-	-	
	26430	Τ	Р	PP	, P	Р	Ρ.	PF	, P	Р	P	PE	P	Р	Ρ.	PE	. 1	Р	
	26386	2	P	P P	P	Р	P	PΕ	P	Р	P 1	ΡE	P	Р	P	ΡI	P	P	
	26392	2	Р	P P	P		Р:	PΕ	P	Ρ	P 1	PΕ	P	Ρ	Р :	PΕ	P	P	
	26322	2	Р	P P	P	Ρ	Р:	PΕ	P	Ρ	P 1	PΕ	P	Ρ	Р :	PΕ	P	P	
	26366	2	P		P			P F		P						ΡI			
	26350		P		P									Ρ	Р	ΡĒ	P	P	
-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/D.	7.V 1_	25 M	1C / 1Z	ر / اب			- - 5												

TABLE A3 (1-2 HOURS POST-DOSING) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

- - - F E M A L E S - - -

PAGE 2

OBSERVATION	ANIMAL	GD GP	0	1 2	3	4	5 6	7	8 9	1	1 1	1 1 2 3	1 4	1 5	1 :	1 1 7 8	1 9	
NO SIGNIFICANT CLINICAL OBSERVATIONS	26342	2		 РР													P	
	26355	2	Ρ.	PР	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P	PР	P	
	26352	2	Ρ:	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26337	2	Ρ.	PР		Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P	PР	P	
	26414	2	Ρ.	PР	Ρ	Ρ :	PР	Ρ	PΕ	P	Ρ :	PΡ	P	Ρ	P 1	P P	P	
	26403	2	Ρ.	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26305	2	Ρ.	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26315	2	Ρ.	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26336	2	Ρ:	P	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26331	2	Ρ:	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26344	2	Ρ:	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26453	2	Ρ.	PР	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26418	2	P	Ρ	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26371	2	Ρ.	PР	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26439	2	Ρ	Ρ	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26442	2	Ρ :	PР	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26303	2	P :	PР	Ρ	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P I	PР	P	
	26346	2	Ρ.	ΡР	Ρ	Р :	ΡР	Ρ	PΕ	P	Р :	PΡ	P	Ρ	P 1	PР	P	
	26438	2	Ρ.	ΡР	Ρ	Р :	ΡР	Ρ	PΕ	P	Р :	PΡ	P	Ρ	P 1	PР	P	
	26423	2	P :	P P	Р	P :	P P	Ρ	P F	P	P	P F)	Ρ	P 1	P P	P	
	26328	3	Р 1		_	P :			PE	P	P	P P	P	P	P I	P P	P	
	26402	3	Ρ.	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26358	3	Ρ.	PР	Ρ		Ρ	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P	PР	P	
	26388	3	P :	PР	P	Р:	PР	Ρ	PΕ	P	Р:	PΡ	P	P	P 1	P P	P	
	26329	3	Ρ:	PР	Ρ	Ρ:	PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26320	3	Ρ.	PР			PР	Ρ	PΕ	P	Р:	PΡ	P	Ρ	P 1	PР	P	
	26424	3	Ρ :	PР	Ρ	P	PР	Ρ	PΕ	P	P	PΡ	P	Ρ	P I	P P	P	
	26435	3	Ρ :	PР	Ρ	P	PР	Ρ	PΕ	P	P	PΡ	P	Ρ	P I	P P	P	
	26419	3	P :	PР	Ρ	P	PР	Ρ	PΕ	P	P	PΡ	P	Ρ	P 1	P P	P	
	26437	3	P :	PР	Ρ	P	PР	Ρ	PΕ	P	P	PΡ	P	Ρ	P 1	P P	P	
	26397	3	P :	PР	Ρ	P	PР	Ρ	PΕ	P	P	PΡ	P	Ρ	P 1	P P	P	
	26385	3	Ρ.	ΡР		Р :	PР	Р	PΕ	P	Р :	PΡ	P	Ρ	P I	PР	P	

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A3 (1-2 HOURS POST-DOSING) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL-402016 INDIVIDUAL POST-DOSE OBSERVATIONS SPONSOR: AMERICAN PETROLEUM

- - - F E M A L E S - - -

PAGE 3

		GD														1	
OBSERVATION	ANIMAL	GP	0 1	2 3	4	5 6	7	8 9	1	1	2 3	3 4	5	6 7	7 8	9	
NO SIGNIFICANT CLINICAL OBSERVATIONS		3	P P			P P	P	P F	P	 Р	 P E	P	 Р	P I	 P	P	
		3	PΡ	Ρ	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Р	PΙ	P	P	
	26365	3	PΡ	ΡР	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Р	PΙ	P	P	
	26319	3	PΡ	PР	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Ρ	PΙ	P P	P	
	26341	3	PΡ	PР	Ρ	P P	P	PΕ	P P	Ρ	PΕ	P	Ρ	PΙ	P	P	
	26421	3	PΡ	ΡР	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Р	PΙ	P	P	
	26454	3	PΡ	ΡР	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Р	PΙ	P	P	
	26343	3	PΡ	PР	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Ρ	PΙ	P P		
	26370	3	P	Ρ	Ρ	P P	P	PΕ	P	Ρ	PΕ	P	Ρ	PΙ	P	P	
	26351	3	P	PР	Ρ	P P	P	PΕ	P	Ρ	PΕ	P	Ρ	PΙ	P	P	
	26354	3	P	Ρ	Ρ	P P	P	PΕ	P	Ρ	PΕ	P	Ρ	PΙ	P	P	
			PΡ	PР	Р	PP	P	PΕ	P	Ρ	PΕ	P	Р	PΙ	P	P	
	26323	3	PΡ			P P	P	P F	P P	P	ΡI	P		Р	Р		
	26334	4	PΡ	PР	Р	P P	P	P F	P	Р	ΡE	P	Р	ΡI	P	P	
	26324	4	PΡ	PР	Ρ	P	P	PΕ	P P	Ρ	PΕ	P P	Ρ	PΙ	P P	P	
	26398	4	PΡ	PР	Ρ	PP	P	PΕ	P P	Ρ	PΕ	P P	Ρ	PΙ	P P	P	
	26373	4	PΡ	PР		P P	P	PΕ	P	Ρ	PΕ	P		PΙ	P	P	
	26313	4	PΡ	PР	Ρ	P P	P	PΕ	P	Ρ	PΕ	P	Ρ	PΙ	P	P	
	26345	4	PΡ	PР	Ρ	P P	P	PΕ	P	Ρ	PΕ	P	Ρ	PΙ	P	P	
	26391	4	PΡ	PР	Р	PP	P	PΕ	P	Ρ	PΕ	P	Р	PΙ	P		
	26379	4	PΡ	PР	Р	PP	P	PΕ	P	Ρ	PΕ	P	Р	PΙ	P	P	
		4	PΡ			PP	P	PΕ	P	Ρ	PΕ	P	Р	PΙ	P	P	
		4	PΡ	ΡР		PP	P	PE	Р	Р	PE	P	Р	PI	P	P	
			P P				P P			P					P	P	
		4					P P			P			P		P	P	
	26399	4	P P				P P			P					- P	P	
		4	P P					PE							P	P	
		4	PP		P		_	PE		P					-	_	
		4	PP	-	P		_	PE	_	P		_	_		_	P	
			P	РР											рρ	_	
			P P							P					P		
	26372		P				P								_		
				_	_	- F	_	т г	. г	T.			T.	_ 1	. г	1	

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A3 (1-2 HOURS POST-DOSING) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

PAGE 4

		GD									1	1 1	. 1	1	1	1	1 1	1		
OBSERVATION	ANIMAL	GP		1 :	2 3	4	5	6	7 8											
NO SIGNIFICANT CLINICAL OBSERVATIONS	26408	4		P 1	 P P	 P	 Р	P I	 P P	 P	Р	 P E	 P	P		P :	 P P	P	 	
	26415	4	Р		Ρ	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	Р :	P P)		
	26325	4	Р]	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	Р :	P P)		
	26431	4	P]	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26306	4	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ		PΡ	P		
	26425	4	Р	P	P P	P	Ρ	PI	P P	Ρ	Ρ	PE	P P	P	Ρ	P	P P	P		
	26382	5	Р	P I	P P	P		PΙ	P P	Р	Р	ΡE	P	P	Р	Р	P	P		
	26347	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ		PΡ	P		
	26394	5	Ρ	P 1	P P	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26389	5	P	P 1	PР)	Ρ	PΙ	P P	Ρ	Ρ	PΕ	? P	P	Ρ	Р:	PΡ	P		
	26311	5	Ρ	P 1	P P)	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26416	5	Ρ	P 1	P P)	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26411	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	? P	P	Ρ	Р:	PΡ	P		
	26448	5	P	P 1	PР	•	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26428	5	Ρ	P 1	P P	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ)		
	26339	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	? P	P	Ρ	Р:	PΡ)		
	26406	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	Ρ	P	P		
	26326	5	P	P 1	Ρ	Ρ	Ρ	PΙ	P P	Ρ	Ρ	PΕ		Ρ	Ρ	P :	PΡ	P		
	26377	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26376	5	P	Ρ		Ρ	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	Р:	Р	P		
	26360	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ		Ρ	Ρ	P :	Р	P		
	26427	5	P	P 1	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	P :	PΡ	P		
	26443	5	P	P I	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ		Ρ			P P	P		
	26314	5	Р	P	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ		Ρ	Ρ	Р :	P P)		
	26436	5	Р	P	PР	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ	Р	P)		
	26413	5	Ρ	P	P P	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P	P	Ρ	Р :	P P	P		
	26356	5	Ρ	P	P P	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P	P	Ρ	Р :	P P	P		
	26444	5	Ρ		Ρ	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P	P	Ρ	Р :	P P	•		
	26452	5	Р	P 1	P P	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ					
	26333	5		P 1	P P	P	Ρ	PΙ	P P	Ρ	Ρ	PΕ	P P	P	Ρ		Р	P		
	26393	5		P I	ΡР	P	Ρ	ΡI	ΡР	Р	Р	PΕ	o p	Р	Р	D	P)		

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A3 (1-2 HOURS POST-DOSING) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 5 PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

		GD	1 1 1 1 1 1 1 1 1	
OBSERVATION	ANIMAL	GP	0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9	
ODY/INTEGUMENT				
WET YELLOW MATERIAL UROGENITAL AREA	26392	2	1	
	26337	2	1	
	26336	2	1	
	26418	2	1 1	
	26439	2	1	
	26358	3	1 1	
	26320	3	1 1	
	26385	3	1	
	26316	3	1	
	26409	3	1	
	26370	3	1 1	
	26351	3	1	
	26354	3	1 1	
	26324	4	1	
	26373	4	1	
	26387	4	1 1	
	26390	4	1	
	26400	4	1 1	
	26404		1	
	26332	4	1	
	26357	4	1 1 1 1	
	26396	4	1	
	26372	4		
	26415	4	1 1	
	26325	4	1	
	26431	4	1	
	26382	5	1	
	26389	5	1	
	26311	5	1	

1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5 MG/KG/DAY 4- 25 MG/KG/DAY 5- 50 MG/KG/DAY

TABLE A3 (1-2 HOURS POST-DOSING) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 6 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

- - - F E M A L E S - - -

OBSERVATION	ANIMAL	GD GP	$\begin{smallmatrix}&&&1&1&1&1&1&1&1&1&1\\0&1&2&3&4&5&6&7&8&9&0&1&2&3&4&5&6&7&8&9\end{smallmatrix}$
WET YELLOW MATERIAL UROGENITAL AREA	26416	5	1
	26448	5	1
	26326	5	1
	26376		1 1
	26444	5	1 1
	26333	5	1
	26393	5	1 2
DRIED YELLOW MATERIAL UROGENITAL AREA	26302	1	1
	26343	3	1
	26415	4	1
	20415	4	ı
ET RED MATERIAL UROGENITAL AREA	26423	2	1
	26373	4	2
	26404	4	1
	26357	4	1
	26408	4	1
	26382	5	1
	26347	5	2
	26406	5	1
	26326	5	3
	26360	5	1
	26443	5	1 11
	26314	5	1
	26452	5	3
DRIED RED MATERIAL UROGENITAL AREA	26323	3	1 1
	26391	4	1

TABLE A3 (1-2 HOURS POST-DOSING) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PAGE 7 SPONSOR: AMERICAN PETROLEUM INDIVIDUAL POST-DOSE OBSERVATIONS

		GD	1 1 1 1 1 1 1 1 1
OBSERVATION	ANIMAL		4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
DRIED RED MATERIAL UROGENITAL AREA	26357	4	1
	26353	4	1 1
	26325	4	1
	26306	4	1
	26339	5	1
	26376	5	1
	26360	5	1
	26436	5	1 1
	26444	5	1
	26333	5	1
	26393	5	1
WET CLEAR MATERIAL UROGENITAL AREA	26323	3	1
KCRETA			
WET RED VAGINAL DISCHARGE	26428	5	P
	26452	5	P
	26333	5	P
1-0 MG/KG/DAY SHAM 2-0 MG/KG/DAY VEH. 3- 5	5 MG/KG/DAY 4-	25 MG/KG/DAY	5- 50 MG/KG/DAY

GRADE CODE: P = PRESENT 1 = SLIGHT 2 = MODERATE 3 = SEVERE

PCOPDv1.04 12/16/2011 TABLE A4

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL DERMAL OBSERVATIONS

______ GROUP : 0 MG/KG/DAY SHAM ANIMAL NO. / SEX ______ 26433/F 26383/F 26384/F 26349/F 26395/F 26405/F 26327/F 26426/F 26312/F 26368/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR 0 SNR SNR SNR SNR SNR SNR 1 SNR 3 SNR SNR SNR SNR SNR SNR SNR 4 SNR 5 SNR SNR SNR SNR SNR 6 SNR 7 SNR 8 SNR SNR SNR SNR SNR SNR SNR SNR SNR 9 SNR 10 SNR 11 SNR SNR SNR SNR SNR SNR 12 SNR 13 SNR 14 15 SNR 16 SNR 17 SNR 18 SNR 19 SNR SNR SNR 20 SNR SNR SNR SNR SNR SNR SNR SNR SNR SNR

PAGE 1

SEX CODE: M = MALE F = FEMALE

SNR = SCORED, NOT REMARKABLE

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

TABLE A4

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL DERMAL OBSERVATIONS

GROUP	: 0 MG/KG/DA	AY SHAM			ANIMAL NO.	/ SEX				
	26318/F	26407/F	26451/F	26432/F	26330/F	26317/F	26309/F	26434/F	26447/F	26304/F
ESTATI DAY	ION			ERYTHEMA	A+/EDEMA+/OT	HER FINDINGS				
0	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
1	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
2	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
3	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
4	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
5	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
6	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
7	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
8	SNR	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
9	SNR	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
10	SNR	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
11	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
12	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
13	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
14	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
15	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
16	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
17	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
18	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
19	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
20	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR

PAGE 2

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

20

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL DERMAL OBSERVATIONS

______ GROUP : 0 MG/KG/DAY SHAM ANIMAL NO. / SEX ______ 26302/F 26369/F 26380/F 26420/F 26430/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR SNR SNR 0 1 SNR 3 SNR SNR SNR SNR SNR 4 SNR SNR SNR SNR SNR 5 SNR SNR SNR SNR 6 SNR 7 SNR SNR 0/0/d SNR SNR 8 SNR SNR 0/0/d SNR SNR 9 SNR SNR 0/0/d SNR SNR SNR SNR SNR SNR SNR 10 SNR SNR SNR SNR SNR 11 12 SNR SNR SNR SNR SNR 13 SNR SNR SNR SNR SNR 14 SNR SNR SNR SNR SNR 15 SNR SNR SNR SNR SNR 16 SNR SNR SNR SNR SNR 17 SNR SNR SNR SNR SNR SNR SNR 18 SNR SNR SNR SNR SNR SNR SNR SNR 19

SNR ______

PAGE 3

SNR

SNR

SNR

SPONSOR: AMERICAN PETROLEUM

SNR + = REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL DERMAL OBSERVATIONS

GROUP	: 0 MG/KG/DA	AY VEH.			ANIMAL NO.	/ SEX				
	26386/F	26392/F	26322/F	26366/F	26350/F	26342/F	26355/F	26352/F	26337/F	26414/F
GESTAT:	ION									
DAY				ERYTHEMA	A+/EDEMA+/OTI	HER FINDINGS				
0	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
1	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
2	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
3	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
4	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
5	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
6	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
7	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
8	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
9	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
10	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
11	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
12	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
13	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
14	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
15	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
16	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
17	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
18	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
19	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
20	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR

PAGE 4

SPONSOR: AMERICAN PETROLEUM

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A4
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 5

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL DERMAL OBSERVATIONS GROUP : 0 MG/KG/DAY VEH ANIMAL NO / SEX

GROUP	: 0 MG/KG/D	AY VEH.			ANIMAL NO.						
	26403/F	26305/F	26315/F	26336/F	26331/F	26344/F	26453/F	26418/F	26371/F	26439/F	
GESTAT	ION										
DAY				ERYTHEM	A+/EDEMA+/OT	HER FINDINGS					
0	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
1	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
2	SNR	SNR	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
3	SNR	SNR	0/0/d	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
4	0/0/d	SNR	0/0/d	SNR	0/0/d	SNR	0/0/d	SNR	SNR	SNR	
5	0/0/d	SNR	0/0/d	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	
6	0/0/d	SNR	0/0/d	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	
7	0/0/d	SNR	SNR	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	
8	SNR	SNR	SNR	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	
9	SNR	SNR	SNR	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	
10	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
11	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
12	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
13	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
14	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
15	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
16	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
17	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
18	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
19	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
20	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

20

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL DERMAL OBSERVATIONS

______ ANIMAL NO. / SEX GROUP : 0 MG/KG/DAY VEH. ______ 26442/F 26303/F 26346/F 26438/F 26423/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR SNR SNR 0 1 SNR 3 0/0/d SNR SNR SNR SNR 4 SNR 0/0/d SNR SNR SNR 5 SNR SNR 0/0/d SNR SNR 6 7 SNR SNR 0/0/d SNR 0/0/d 8 SNR SNR SNR SNR SNR 9 SNR 10 SNR SNR SNR SNR SNR 11 12 SNR SNR SNR SNR SNR 13 SNR SNR SNR SNR SNR 14 SNR SNR SNR SNR SNR 15 SNR SNR SNR SNR SNR 16 SNR SNR SNR SNR SNR 17 SNR SNR SNR SNR SNR SNR SNR 18 SNR SNR SNR SNR SNR SNR SNR SNR 19

SNR ______

PAGE 6

SNR

SNR

SNR

SPONSOR: AMERICAN PETROLEUM

SNR + = REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

20

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL DERMAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM ______ GROUP: 5 MG/KG/DAY ANIMAL NO. / SEX 26328/F 26402/F 26358/F 26388/F 26329/F 26320/F 26424/F 26435/F 26419/F 26437/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR 0 SNR SNR SNR SNR SNR 1 SNR 3 SNR SNR SNR SNR SNR SNR SNR 4 SNR SNR SNR SNR SNR SNR SNR SNR SNR 0/0/d SNR SNR SNR 5 SNR SNR SNR SNR 6 SNR SNR SNR SNR SNR SNR SNR 0/0/d SNR SNR 7 SNR 0/0/d SNR 0/0/d SNR SNR SNR 0/0/d SNR 8 SNR SNR 0/0/d SNR SNR SNR SNR SNR SNR SNR 9 SNR 10 SNR 11 SNR SNR SNR SNR SNR SNR 12 SNR 13 SNR 14 15 SNR 16 SNR 17 SNR 18 SNR 19 SNR SNR SNR SNR

SNR

SNR

SNR

SNR

SNR

SNR

PAGE 7

SNR

SNR

SNR

SNR + = REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

SPONSOR: AMERICAN PETROLEUM

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL DERMAL OBSERVATIONS

PAGE

8

______ GROUP: 5 MG/KG/DAY ANIMAL NO. / SEX 26397/F 26385/F 26316/F 26409/F 26365/F 26319/F 26341/F 26421/F 26454/F 26343/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR 0 SNR SNR SNR SNR SNR SNR 1 SNR 3 SNR SNR SNR 0/0/d SNR 0/0/d 0/0/d SNR 4 SNR SNR SNR 0/0/d SNR 0/0/d 0/0/d SNR SNR 0/0/d SNR 5 SNR 0/0/d SNR SNR 0/0/d 6 0/0/d SNR 0/0/d SNR SNR SNR SNR SNR SNR 7 0/0/dSNR SNR SNR SNR SNR SNR SNR SNR SNR 8 SNR 9 SNR 10 SNR 11 SNR SNR SNR SNR SNR 12 SNR 13 SNR 14 15 SNR 16 SNR 17 SNR 18 SNR 19 SNR SNR SNR SNR 20 SNR ______

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 9 INDIVIDUAL DERMAL OBSERVATIONS

GROUP	: 5 MG/KG,	/DAY			ANIMAL NO.	SEX
	26370/F	26351/F	26354/F	26378/F	26323/F	
GESTATI	ON					
DAY				ERYTHEM.	A+/EDEMA+/OT	ER FIND
0	SNR	SNR	SNR	SNR	SNR	
1	SNR	SNR	SNR	SNR	SNR	
2	0/0/d	SNR	0/0/d	SNR	SNR	
3	SNR	SNR	0/0/d	SNR	SNR	
4	SNR	SNR	0/0/d	SNR	SNR	
5	SNR	SNR	0/0/d	SNR	SNR	
6	SNR	SNR	SNR	SNR	SNR	
7	SNR	SNR	SNR	SNR	SNR	
8	SNR	SNR	SNR	SNR	SNR	
9	SNR	SNR	SNR	SNR	SNR	
10	SNR	SNR	SNR	SNR	SNR	
11	SNR	SNR	SNR	SNR	SNR	
12	SNR	SNR	SNR	SNR	SNR	
13	SNR	SNR	SNR	SNR	SNR	
14	SNR	SNR	SNR	SNR	SNR	
15 16	SNR SNR	SNR SNR	SNR SNR	SNR SNR	SNR SNR	
17	SNR	SNR	SNR	SNR	SNR	
18	SNR	SNR	SNR	SNR	SNR	
19	SNR	SNR	SNR	SNR	SNR	
20	SNR	SNR	SNR	SNR	SNR	

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SPONSOR: AMERICAN PETROLEUM

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A4

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 10

INDIVIDUAL DERMAL OBSERVATIONS

GROUP	: 25 MG/KG	G/DAY			ANIMAL NO.	/ SEX				
	26334/F	26324/F	26398/F	26373/F	26313/F	26345/F	26391/F	26379/F	26387/F	26390/F
ESTATI	ON									
DAY				ERYTHEMA	A+/EDEMA+/OT	HER FINDINGS				
0	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
1	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
2	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
3	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
4	SNR	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	SNR	SNR
5	SNR	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	0/0/d	SNR
6	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
7	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
8	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
9	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
10	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
11	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
12	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
13	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
14	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
15	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
16	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
17	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
18	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
19	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR
20	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SPONSOR:AMERICAN PETROLEUM

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

13

14 15

16

17

18

19

20

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 11

INDIVIDUAL DERMAL OBSERVATIONS

______ GROUP: 25 MG/KG/DAY ANIMAL NO. / SEX 26400/F 26404/F 26399/F 26301/F 26332/F 26357/F 26396/F 26353/F 26372/F 26408/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR SNR 0 SNR SNR SNR SNR SNR 1 SNR 0/0/d SNR SNR SNR SNR SNR 0/0/d b/0/0 SNR SNR SNR SNR SNR SNR 3 SNR SNR SNR SNR SNR SNR SNR 4 SNR SNR SNR SNR 0/0/d 0/0/d SNR SNR 0/0/d SNR SNR 5 SNR SNR SNR 0/0/d 0/0/d SNR 6 SNR 0/0/d SNR SNR SNR SNR SNR SNR 0/0/d 7 SNR SNR SNR SNR SNR SNR SNR SNR 0/0/dSNR SNR 8 SNR SNR SNR SNR SNR SNR SNR SNR 9 SNR 10 SNR 11 SNR SNR SNR SNR SNR 12 SNR SNR SNR SNR SNR SNR SNR SNR SNR SNR

SNR

SNR

SNR

SNR

SNR

SNR

SNR

SNR

SNR

SPONSOR: AMERICAN PETROLEUM

SNR

SNR

SNR

SNR

SNR

SNR

SNR

SNR

SNR + = REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A4

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 12

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL DERMAL OBSERVATIONS

GROUP	: 25 MG/K	G/DAY			ANIMAL NO.	/ SEX
	26415/F	26325/F	26431/F	26306/F	26425/F	
GESTAT	ION					
DAY						HER FINDINGS
0	SNR	SNR	SNR	SNR	SNR	
1	SNR	SNR	SNR	SNR	SNR	
2	SNR	SNR	SNR	SNR	SNR	
3	SNR	SNR	SNR	SNR	SNR	
4	SNR	SNR	SNR	SNR	SNR	
5	SNR	SNR	SNR	SNR	SNR	
6	SNR	SNR	SNR	SNR	SNR	
7	SNR	SNR	SNR	SNR	SNR	
8	SNR	SNR	SNR	SNR	SNR	
9	SNR	SNR	SNR	SNR	SNR	
10	SNR	SNR	SNR	SNR	SNR	
11	SNR	SNR	SNR	SNR	SNR	
12	SNR	SNR	SNR	SNR	SNR	
13	SNR	SNR	SNR	SNR	SNR	
14	SNR	SNR	SNR	SNR	SNR	
15	SNR	SNR	SNR	SNR	SNR	
16	SNR	SNR	SNR	SNR	SNR	
17	SNR	SNR	SNR	SNR	SNR	
18	SNR	SNR	SNR	SNR	SNR	
19	SNR	SNR	SNR	SNR	SNR	
20	SNR	SNR	SNR	SNR	SNR	

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A4

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 13

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL DERMAL OBSERVATIONS

DI ONDOR	· APIDICICAIV I	БТКОВДОМ		INDIV	IDOAL DEKRIAL	ODDERVATION	5				
GROUP	: 50 MG/K	G/DAY			ANIMAL NO.	/ SEX					-
	26382/F	26347/F	26394/F	26389/F	26311/F	26416/F	26411/F	26448/F	26428/F	26339/F	-
GESTATI DAY	ON			ERYTHEM	A+/EDEMA+/OT	HER FINDINGS					-
0	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	_
1	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
2	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
3	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
4	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
5	SNR	SNR	SNR	SNR	SNR	SNR	0/0/d	SNR	SNR	SNR	
6	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
7	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
8	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
9	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
10	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
11	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
12	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
13	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
14	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
15	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
16	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
17	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
18	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
19	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	
20	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	SNR	

^{+ =} REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

20

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL DERMAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM ______ GROUP: 50 MG/KG/DAY ANIMAL NO. / SEX 26406/F 26326/F 26377/F 26376/F 26360/F 26427/F 26443/F 26314/F 26436/F 26413/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR 0 SNR SNR SNR SNR SNR SNR 1 SNR 3 SNR SNR SNR SNR SNR SNR SNR SNR 4 SNR SNR SNR SNR SNR SNR SNR 0/0/d SNR 0/0/d SNR SNR 5 SNR SNR SNR SNR 0/0/d SNR 6 SNR SNR 0/0/d SNR SNR SNR SNR SNR 7 SNR 8 SNR SNR SNR SNR SNR SNR SNR SNR SNR 9 SNR 10 SNR 11 SNR SNR SNR SNR SNR SNR SNR 12 SNR 13 SNR 14 15 SNR 16 SNR 17 SNR 18 SNR 19 SNR SNR / SNR SNR

SNR

SNR

SNR

DEAD

SNR

SNR

PAGE 14

SNR

SNR

SNR

SNR + = REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

20

TABLE A4 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SNR

INDIVIDUAL DERMAL OBSERVATIONS SPONSOR: AMERICAN PETROLEUM ______ GROUP: 50 MG/KG/DAY ANIMAL NO. / SEX 26356/F 26444/F 26452/F 26333/F 26393/F GESTATION ERYTHEMA+/EDEMA+/OTHER FINDINGS DAY SNR SNR SNR SNR SNR 0 1 SNR 3 SNR SNR SNR SNR 4 SNR SNR SNR SNR SNR SNR 5 SNR SNR SNR SNR 6 SNR 7 SNR SNR SNR SNR SNR 8 SNR SNR SNR SNR SNR 9 SNR 10 SNR SNR SNR SNR SNR 11 12 SNR SNR SNR SNR SNR 13 SNR SNR SNR SNR SNR 14 SNR SNR SNR SNR SNR 15 SNR SNR SNR SNR SNR 16 SNR SNR SNR SNR SNR 17 SNR SNR SNR SNR SNR SNR SNR 18 / SNR SNR SNR SNR SNR SNR 19 DEAD

SNR

SNR

PIDERRv4.02 11/11/2011 R:12/16/2011

PAGE 15

SNR + = REFER TO DRAIZE SCALE FOR DERMAL SCORING CRITERIA

SEX CODE: M = MALE F = FEMALE

d = DESQUAMATION, SNR = SCORED, NOT REMARKABLE

TABLE A5

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHTS DURING GESTATION [G]

	GNANCY TATUS	DAY 0	3	6	9	12	15	18	20
DAMS	FROM GR	ROUP 1: 0 MG/	KG/DAY SH	AM					
26302	G	250.	248.	261.	280.	295.	312.	353.	386. SCHEDULED NECROPSY DAY 20
26304	G	255.	250.	262.	275.	279.	304.	334.	371. SCHEDULED NECROPSY DAY 20
26309	G	275.	274.	286.	307.	309.	329.	368.	400. SCHEDULED NECROPSY DAY 20
26312	G	252.	247.	266.	285.	305.	323.	372.	411. SCHEDULED NECROPSY DAY 20
26317	G	270.	274.	284.	305.	323.	341.	388.	425. SCHEDULED NECROPSY DAY 20
26318	G	235.	238.	248.	263.	278.	296.	334.	362. SCHEDULED NECROPSY DAY 20
26327	G	257.	239.	253.	265.	282.	299.	345.	394. SCHEDULED NECROPSY DAY 20
26330	G	262.	252.	272.	292.	307.	326.	368.	398. SCHEDULED NECROPSY DAY 20
26349	NG	251.	237.	250.	263.	268.	261.	268.	270. SCHEDULED NECROPSY DAY 20
26368	G	245.	226.	230.	250.	268.	288.	328.	365. SCHEDULED NECROPSY DAY 20
26369	G	244.	246.	256.	275.	286.	309.	346.	384. SCHEDULED NECROPSY DAY 20
26380	G	244.	242.	258.	263.	271.	283.	331.	353. SCHEDULED NECROPSY DAY 20
26383	G	242.	248.	273.	282.	303.	311.	346.	383. SCHEDULED NECROPSY DAY 20
26384	G	244.	245.	253.	267.	286.	299.	333.	368. SCHEDULED NECROPSY DAY 20
26395	G	253.	243.	255.	270.	288.	298.	335.	379. SCHEDULED NECROPSY DAY 20
26405	G	258.	253.	265.	281.	291.	311.	329.	373. SCHEDULED NECROPSY DAY 20
26407	G	244.	252.	265.	272.	296.	311.	353.	390. SCHEDULED NECROPSY DAY 20
26420	G	261.	269.	276.	289.	304.	317.	367.	397. SCHEDULED NECROPSY DAY 20
26426	G	254.	239.	248.	265.	279.	303.	350.	379. SCHEDULED NECROPSY DAY 20
26430	G	273.	272.	287.	304.	313.	336.	379.	421. SCHEDULED NECROPSY DAY 20
26432	G	257.	252.	265.	283.	306.	317.	351.	376. SCHEDULED NECROPSY DAY 20
26433	G	224.	239.	257.	266.	289.	298.	326.	363. SCHEDULED NECROPSY DAY 20
26434	G	261.	256.	266.	277.	283.	299.	343.	381. SCHEDULED NECROPSY DAY 20
26447	G	255.	266.	274.	283.	294.	313.	349.	389. SCHEDULED NECROPSY DAY 20
26451	G	251.	260.	269.	278.	297.	315.	356.	390. SCHEDULED NECROPSY DAY 20
MEAN		253.	251.	264.	278.	293.	310.	349.	385.
S.D.		11.7	12.6	13.2	14.2	13.8	14.3	17.1	18.1
S.E.		2.4	2.6	2.7	2.9	2.8	2.9	3.5	3.7
N		24	24	24	24	24	24	24	24

PAGE 1

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

TABLE A5

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHTS DURING GESTATION [G]

SPONSOR:A	MERICAN	PETROLEUM		INDI	VIDUAL BO	DY WEIGHT	S DURING (GESTATION	[G]
	GNANCY TATUS	DAY 0	3	6	9	12	15	18	20
DAMS	FROM GR	OUP 2: 0 MG/	KG/DAY VE	н.					
	G G	245. 228.		250. 255.	258. 257.	269. 274.	289. 292.	328. 324.	361. SCHEDULED NECROPSY DAY 20 354. SCHEDULED NECROPSY DAY 20
	G	251.	248.	259.	269.	293.	301.	341.	371. SCHEDULED NECROPSY DAY 20
26322	G	242.	249.	262.	277.	302.	314.	354.	391. SCHEDULED NECROPSY DAY 20
26331	G	261.	261.	271.	283.	300.	317.	351.	386. SCHEDULED NECROPSY DAY 20
26336	G	259.	261.	277.	285.	305.	320.	362.	399. SCHEDULED NECROPSY DAY 20
26337	G	252.	253.	264.	285.	298.	316.	349.	382. SCHEDULED NECROPSY DAY 20
26342 26344	G C	263.	265. 277.	279. 280.	297. 292.	314. 309.	335. 325.	363. 356.	427. SCHEDULED NECROPSY DAY 20 398. SCHEDULED NECROPSY DAY 20
26346	G G	273. 239.	228.	236.	245.	258.	274.	295.	320. SCHEDULED NECROPSY DAY 20
26350	G	258.	251.	267.	286.	296.	323.	359.	383. SCHEDULED NECROPSY DAY 20
26352	G	257.	249.	264.	284.	303.	326.	362.	399. SCHEDULED NECROPSY DAY 20
26355	NG	264.	252.	252.	265.	277.	280.	276.	285. SCHEDULED NECROPSY DAY 20
26366	G	247.	233.	255.	269.	296.	305.	338.	373. SCHEDULED NECROPSY DAY 20
26371	G	258.	264.	264.	285.	299.	321.	364.	394. SCHEDULED NECROPSY DAY 20
26386	G		197.	222.	249.	257.	265.	281.	295. SCHEDULED NECROPSY DAY 20
26392	G		230.	242.	245.	280.	289.	331.	364. SCHEDULED NECROPSY DAY 20
26403	G		244.	256.	271.	286.	305.	338.	372. SCHEDULED NECROPSY DAY 20
26414	G		227.	239.	256.	276.	296.	331.	371. SCHEDULED NECROPSY DAY 20
26418	G	260.	271.	284.	289.	309.	323.	364.	
26423 26438	G G	244. 261.	239. 261.	251. 273.	271. 287.	281. 299.	299. 323.	331. 371.	367. SCHEDULED NECROPSY DAY 20 401. SCHEDULED NECROPSY DAY 20
26439	G		263.	273. 272.	282.	299. 297.	323.	366.	401. SCHEDULED NECROPSI DAI 20 402. SCHEDULED NECROPSY DAY 20
26442				257.	262.	276.	287.		346. SCHEDULED NECROPSY DAY 20
	G			280.	291.	310.	322.	368.	
MEAN		251.		261.	274.	291.	308.	343.	377.
S.D.		11.3		15.6		16.2			28.7
S.E.						3.3			5.9
N		24	24	24	24	24	24	24	24

PAGE 2

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

S.D.

S.E.

N

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHTS DURING GESTATION [G]

PREGNANCY STATUS DAY 0 3 6 9 12 15 18 20 ______ DAMS FROM GROUP 3: 5 MG/KG/DAY 300. 337. 247. 252. 260. 266. 275. 363. SCHEDULED NECROPSY DAY 20 26316 G 277. 261. 26319 G 265. 255. 292. 318. 365. 398. SCHEDULED NECROPSY DAY 20 269. 303. 340. 259. 266. 26320 G 272. 281. 298. 371. 408. SCHEDULED NECROPSY DAY 20 26323 G 243. 233. 231. 237. 304. 331. SCHEDULED NECROPSY DAY 20 328. 26328 G 231. 232. 242. 260. 280. 295. 358. SCHEDULED NECROPSY DAY 20 402. SCHEDULED NECROPSY DAY 20 270. 356. 26329 G 256. 256. 285. 303. 315. 340. 279. 382. 412. SCHEDULED NECROPSY DAY 20 26341 G 283. 303. 308. 325. 319. 390. SCHEDULED NECROPSY DAY 20 26343 G 253. 258. 276. 284. 295. 363. 234. 269. 26351 G 247. 239. 252. 253. 311. 335. SCHEDULED NECROPSY DAY 20 26354 G 236. 291. 355. SCHEDULED NECROPSY DAY 20 228. 242. 257. 276. 326. 327. 26358 G 244. 245. 258. 283. 300. 372. 405. SCHEDULED NECROPSY DAY 20 26365 G 260. 254. 271. 274. 297. 315. 348. 382. SCHEDULED NECROPSY DAY 20 362. SCHEDULED NECROPSY DAY 20 26370 G 253. 247. 257. 268. 278. 301. 337. 366. SCHEDULED NECROPSY DAY 20 26378 G 241. 236. 251. 266. 282. 296. 333. 26385 G 235. 244. 261. 268. 280. 299. 342. 368. SCHEDULED NECROPSY DAY 20 26388 G 252. 247. 263. 270. 279. 291. 327. 350. SCHEDULED NECROPSY DAY 20 26397 G 242. 243. 255. 269. 280. 301. 333. 365. SCHEDULED NECROPSY DAY 20 26402 G 235. 243. 244. 266. 274. 292. 335. 358. SCHEDULED NECROPSY DAY 20 26409 G 260. 263. 267. 262. 279. 300. 346. 381. SCHEDULED NECROPSY DAY 20 26419 G 251. 249. 265. 276. 293. 312. 365. 392. SCHEDULED NECROPSY DAY 20 26421 G 259. 256. 265. 275. 287. 303. 336. 365. SCHEDULED NECROPSY DAY 20 301. 26424 G 284. 318. 328. 359. 392. SCHEDULED NECROPSY DAY 20 266. 269. 330. 26435 G 252. 254. 259. 272. 287. 301. 363. SCHEDULED NECROPSY DAY 20 353. 26437 G 247. 253. 262. 279. 290. 306. 383. SCHEDULED NECROPSY DAY 20 26454 G 256. 264. 273. 279. 299. 309. 345. 373. SCHEDULED NECROPSY DAY 20 MEAN 251. 251. 262. 273. 287. 305. 344. 374.

PAGE

3

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

15.6

3.1

25

15.3

3.1

25

16.1

25

3.2

18.0

3.6

25

19.3

25

3.9

21.9

4.4

25

13.1

2.6

25

11.9

2.4

25

TABLE A5

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHTS DURING GESTATION [G]

	REGNANCY								
PI	STATUS	DAY 0	3	6	9	12	15	18	20
DAM	S FROM GR	OUP 4: 25 I	MG/KG/DAY						
2630	1 G	259.	256.	261.	270.	287.	293.	322.	340. SCHEDULED NECROPSY DAY 20
2630	6 G	271.	253.	275.	284.	303.	319.	354.	390. SCHEDULED NECROPSY DAY 20
26313	3 G	253.	256.	262.	270.	289.	295.	329.	348. SCHEDULED NECROPSY DAY 20
26324	4 G	235.	228.	246.	251.	259.	271.	288.	300. SCHEDULED NECROPSY DAY 20
2632	5 G	247.	242.	258.	277.	289.	304.	333.	352. SCHEDULED NECROPSY DAY 20
26332	2 G	260.	250.	261.	274.	294.	311.	342.	371. SCHEDULED NECROPSY DAY 20
26334	4 G	229.	228.	247.	257.	267.	272.	286.	295. SCHEDULED NECROPSY DAY 20
2634!	5 G	264.	255.	270.	290.	301.	305.	307.	315. SCHEDULED NECROPSY DAY 20
26353	3 G	262.	255.	279.	267.	293.	298.	321.	332. SCHEDULED NECROPSY DAY 20
2635	7 G	267.	259.	276.	286.	301.	316.	336.	368. SCHEDULED NECROPSY DAY 20
26372	2 G	255.	233.	241.	245.	266.	282.	304.	331. SCHEDULED NECROPSY DAY 20
26373	3 G	249.	243.	258.	272.	279.	282.	302.	329. SCHEDULED NECROPSY DAY 20
26379	9 G	257.	243.	263.	270.	281.	285.	290.	297. SCHEDULED NECROPSY DAY 20
2638	7 G	248.	246.	253.	258.	271.	287.	287.	325. SCHEDULED NECROPSY DAY 20
26390	0 G	244.	237.	247.	259.	276.	284.	311.	325. SCHEDULED NECROPSY DAY 20
2639		264.	264.	276.	287.	305.	309.	333.	343. SCHEDULED NECROPSY DAY 20
2639	5 G	272.	274.	278.	286.	306.	305.	315.	313. SCHEDULED NECROPSY DAY 20
26398		246.	252.	271.	288.	296.	316.	353.	383. SCHEDULED NECROPSY DAY 20
2639	9 G	255.	266.	277.	288.	303.	309.	350.	379. SCHEDULED NECROPSY DAY 20
2640		243.	238.	251.	267.	283.	298.	331.	342. SCHEDULED NECROPSY DAY 20
26404		243.	239.	245.	258.	277.	290.	302.	326. SCHEDULED NECROPSY DAY 20
26408	3 G	255.	247.	256.	265.	279.	298.	316.	317. SCHEDULED NECROPSY DAY 20
2641		252.	258.	266.	276.	282.	294.	323.	344. SCHEDULED NECROPSY DAY 20
2642		274.	268.	272.	283.	290.	302.	321.	337. SCHEDULED NECROPSY DAY 20
2643	1 G	231.	232.	245.	253.	265.	280.	315.	332. SCHEDULED NECROPSY DAY 20
MEAI	1	253.	249.	261.	271.	286.	296.	319.	337.
S.D		12.2	12.6	12.2	13.2	13.7	13.6	20.2	25.8
S.E		2.4	2.5	2.4	2.6	2.7	2.7	4.0	5.2
N	-	25	25	25	25	25	25	25	25

PAGE 4

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

TABLE A5 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

PAGE 5 INDIVIDUAL BODY WEIGHTS DURING GESTATION [G] SPONSOR: AMERICAN PETROLEUM

	GNANCY								
S	TATUS	DAY 0	3	6	9	12	15	18	20
DAMS	FROM GR	OUP 5: 50	MG/KG/DAY						
26311		258.	259.	280.	294.	305.	322.	339.	349. SCHEDULED NECROPSY DAY 20
26314	G	260.	241.	249.	262.	274.	290.	262.	NA GRAVID, DIED DAY 19
26326	G	242.	237.	251.	261.	290.	284.	265.	269. SCHEDULED NECROPSY DAY 20
26333	G	268.	259.	266.	271.	282.	281.	297.	309. SCHEDULED NECROPSY DAY 20
26339	G	243.	238.	245.	260.	271.	284.	281.	286. SCHEDULED NECROPSY DAY 20
26347	G	236.	229.	251.	253.	270.	272.	267.	273. SCHEDULED NECROPSY DAY 20
26356	G	250.	244.	263.	260.	279.	282.	300.	306. SCHEDULED NECROPSY DAY 20
26360	G	260.	249.	269.	277.	282.	298.	306.	316. SCHEDULED NECROPSY DAY 20
26376	G	256.	238.	252.	253.	273.	277.	280.	289. SCHEDULED NECROPSY DAY 20
26377	G	245.	225.	242.	253.	269.	268.	283.	300. SCHEDULED NECROPSY DAY 20
26382	G	231.	229.	238.	248.	249.	243.	248.	258. SCHEDULED NECROPSY DAY 20
26389	G	247.	237.	245.	259.	269.	274.	264.	249. SCHEDULED NECROPSY DAY 20
26393	G	256.	256.	264.	272.	282.	296.	311.	331. SCHEDULED NECROPSY DAY 20
26394	G	243.	233.	242.	246.	250.	253.	261.	267. SCHEDULED NECROPSY DAY 20
26406	G	242.	238.	236.	246.	254.	261.	269.	249. SCHEDULED NECROPSY DAY 20
26411	NG	258.	254.	263.	273.	279.	275.	268.	274. SCHEDULED NECROPSY DAY 20
26413	G	255.	254.	261.	274.	277.	284.	295.	311. SCHEDULED NECROPSY DAY 20
26416	G	267.	257.	276.	282.	309.	321.	313.	352. SCHEDULED NECROPSY DAY 20
26427	G	270.	258.	267.	278.	292.	293.	309.	329. SCHEDULED NECROPSY DAY 20
26428	G	248.	238.	244.	254.	264.	276.	240.	231. SCHEDULED NECROPSY DAY 20
26436	G	257.	247.	256.	268.	284.	286.	295.	281. SCHEDULED NECROPSY DAY 20
26443	G	284.	255.	292.	294.	320.	323.	334.	346. SCHEDULED NECROPSY DAY 20
26444	G	245.	239.	235.	240.	247.	247.	254.	259. SCHEDULED NECROPSY DAY 20
26448	G	257.	248.	252.	276.	287.	283.	290.	289. SCHEDULED NECROPSY DAY 20
26452	G	238.	226.	243.	252.	265.	269.	NA	NA GRAVID, DIED DAY 18
MEAN		252.	243.	255.	264.	277.	282.	285.	293.
S.D.		12.3	10.9	14.8	14.8	18.4	20.9	26.4	34.8
S.E.		2.5	2.2	3.0	3.0	3.8	4.3	5.5	7.4
N		24	24	24	24	24	24	23	22

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN NA = NOT APPLICABLE

PGBWv4.09 11/11/2011 R:12/16/2011 TABLE A6

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHT CHANGES DURING GESTATION [G]

PREGN		DAY 0- 3	3 - 6	6- 9	9_ 19	12_ 15	15_ 10	18_ 20	0- 20	
		GROUP 1: 0 MG/			J- 12					
DAMS	FROM (JROUP 1: 0 MG/	KG/DAI SH	IAIM						
26302	G	-2.	13.	19.	15.	17.	41.	33.	136.	SCHEDULED NECROPSY DAY 20
26304	G	-5. -1. -5. 4. 3.	12.	13.	4.	25.	30.	37. 32.	116.	SCHEDULED NECROPSY DAY 20
26309	G	-1.	12.	21.	2.	20.	39.	32.	125.	SCHEDULED NECROPSY DAY 20
26312	G	-5.	19.	19.	20.	18.	49.	39.	159.	SCHEDULED NECROPSY DAY 20
26317	G	4.	10.	21.	18.	18.	47.	37.	155.	SCHEDULED NECROPSY DAY 20
26318	G	3.	10.	15.	15.	18.	38.	28.	127.	SCHEDULED NECROPSY DAY 20
26327	G	-18.	14.	12.	17.	17.	46.	49.	137.	SCHEDULED NECROPSY DAY 20
26330	G	-10.	20.	20.	15.	19.	42.	30.	136.	SCHEDULED NECROPSY DAY 20
26349	NG	-14.	13.	13.	5. 18.	-7.	7.	2.	19.	SCHEDULED NECROPSY DAY 20
26368	G	-19.	4.	20.	18.	20.	40.	37.	120.	SCHEDULED NECROPSY DAY 20
26369	G	2.	10.	19.	11.	23.	37.	38.	140.	SCHEDULED NECROPSY DAY 20
26380	G	-2. 6. 1. -10.	16.	5.	8.	12. 8. 13. 10.	48.	22.	109.	SCHEDULED NECROPSY DAY 20
26383	G G	6.	25.	9.	21.	8.	35.	37.	141.	SCHEDULED NECROPSY DAY 20
26384	G	1.	8.	14.	19.	13.	34.	35.	124.	SCHEDULED NECROPSY DAY 20
26395	G	-10.	12.	15.	18.	10.	37.	44.	126.	SCHEDULED NECROPSY DAY 20
26405	G	-5.	12.	16.	10.	20.	18.	44.	115.	SCHEDULED NECROPSY DAY 20
26407	G	8.	13.	7.	24.	15.	42.	37.	146.	SCHEDULED NECROPSY DAY 20
26420	G	8.	7.	13.	15.	13.	50.	30.	136.	SCHEDULED NECROPSY DAY 20
26426	G	-15.	9.	17.	14.	24.	47.	29.	125.	SCHEDULED NECROPSY DAY 20
26430	G	8. 8. -15. -1.	15.	17.	9.	23.	43.	42.	148.	SCHEDULED NECROPSY DAY 20
26432	G	-1. -5. 15.	13.	18.	23.	11.	34.	25.	119.	SCHEDULED NECROPSY DAY 20
26433	G	15.	18.	9.	23.	9.	28.	37.	139.	SCHEDULED NECROPSY DAY 20
26434	G	-5.	10.	11	_	16.	44.	38.	120.	SCHEDULED NECROPSY DAY 20
26447	G	11.	8.	9.	11.	19.	36.	40.	134.	SCHEDULED NECROPSY DAY 20
26451	G	11. 9.	9.	9.	19.	18.	41.	37. 39. 37. 28. 49. 30. 2. 37. 35. 44. 44. 37. 30. 29. 42. 25. 37. 38.	139.	SCHEDULED NECROPSY DAY 20
MEAN		-2. 8.9	12.	15.	15.	17.	39.	36.	132.	
S.D.		8.9	4.7		6.1	4.7	7.4 1.5	6.3	12.8	
S.E.		1.8	1.0	1.0	1.2	1.0	1.5	1.3	2.6	
N		24	24	24	24	24	24	24	24	

PAGE 1

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

TABLE A6

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHT CHANGES DURING GESTATION [G]

PREGN	IANCY									
STA	TUS	DAY 0- 3	3 - 6	6- 9	9- 12	12- 15	15- 18	18- 20	0- 20	
DAMS	FROM	GROUP 2: 0 MG/	KG/DAY VE	:H.						
26303	G	12.	-7.	8.	11.	20.	39.	33.	116.	SCHEDULED NECROPSY DAY 20
26305	G	14.	13.	2.	17.	18.	32.	30.	126.	SCHEDULED NECROPSY DAY 20
26315	G	14. -3.	11.	10.	24.	8.	40.	30.	120.	SCHEDULED NECROPSY DAY 20
26322	G	7. 0. 2.	13.	15.	25.	12.	40.	37. 35.	149.	SCHEDULED NECROPSY DAY 20
26331	G	0.	10.	12.	17.	17.	34.	35.	125.	SCHEDULED NECROPSY DAY 20
26336	G	2.	16.	8.	20.	15.	42.	37. 33.	140.	SCHEDULED NECROPSY DAY 20
26337	G	1.	11.	21.	13.	18.	33.	33.	130.	SCHEDULED NECROPSY DAY 20
26342	G	2.	14.	18.	17.	21.	28.	64.	164.	SCHEDULED NECROPSY DAY 20
26344	G	4.	3.	12.	17.	16.	31.	42.	125.	SCHEDULED NECROPSY DAY 20 SCHEDULED NECROPSY DAY 20
26346	G	-11.	8.	9.	13.	16.	21.	25.	81.	SCHEDULED NECROPSY DAY 20
26350	G	-7.	16.	19.	10.	27.	36.	24.	125.	SCHEDULED NECROPSY DAY 20
26352	G	-8.	15.	20.	19.	23.	36.	37.	142.	SCHEDULED NECROPSY DAY 20
26355	NG	-12.	0.	13.	12.	3.	-4.	9.	21.	SCHEDULED NECROPSY DAY 20
26366	G	-14.	22.	14.	27.	9.	33.	35.	126.	SCHEDULED NECROPSY DAY 20
26371	G	6.	0.	21.	14.	22.				SCHEDULED NECROPSY DAY 20
26386	G	-35.	25.	27.	8.	8.	16.	14.	63.	SCHEDULED NECROPSY DAY 20
26392	G	-5.	12.	3.	35.	9.	42.	33.	129.	SCHEDULED NECROPSY DAY 20
26403	G	2.	12.	15.	15.	19.	33.	34.	130.	SCHEDULED NECROPSY DAY 20
26414	G	-16.	12.	17.	20.	20.	35.	40.	128.	SCHEDULED NECROPSY DAY 20
26418	G	11.	13.	5.	20.	14.	41.	36.	140.	SCHEDULED NECROPSY DAY 20
26423	G	-5.		20.	10.	18.	32.	36.	123.	SCHEDULED NECROPSY DAY 20
26438	G	0.	12.	14.	12.	24.	48.	30.	140.	SCHEDULED NECROPSY DAY 20
26439	G	9.		10.	15.	25.	44.	36.	148.	SCHEDULED NECROPSY DAY 20
26442	G	-5.	10.	5.	14.	11.	29.	30.	94.	SCHEDULED NECROPSY DAY 20
26453		0.	15.	11.	19.	12.	46.	34.	137.	SCHEDULED NECROPSY DAY 20
MEAN		-2.	12.	13.	17.	17.	36.	34.	127.	
S.D.		10.6	6.4	6.4		5.5	7.6		21.6	
S.E.		2.2	1.3		1.3	1.1	1.5	1.8	4.4	
N		24		24		24	24	24	24	

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

TABLE A6

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 3

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHT CHANGES DURING GESTATION [G]

PREGN STA	IANCY ATUS	DAY 0- 3	3 - 6	6- 9	9- 12	12- 15	15- 18	18- 20	0- 20	
DAMS	FROM	GROUP 3:	MG/KG/DAY							
26316	G	5	. 8.	6.	9.	25.	37.	26.	116.	SCHEDULED NECROPSY DAY 20
26319	G	-10	. 6.	16.	15.	26.	47.	33.	133.	SCHEDULED NECROPSY DAY 20
26320	G	-3	. 12.	17.	5.	37.	31.	37.	136.	SCHEDULED NECROPSY DAY 20
26323	G	-10	-2.	6.	22.	7.	38.	27.	88.	SCHEDULED NECROPSY DAY 20
26328	G	1	. 10.	18.	20.	15.	33.	30.	127.	SCHEDULED NECROPSY DAY 20
26329	G	0	14.	15.	18.	12.	41.	46.	146.	SCHEDULED NECROPSY DAY 20
26341	G	4	. 20.	5.	17.	15.	42.	30.	133.	SCHEDULED NECROPSY DAY 20
26343	G	5	. 18.	8.	11.	24.	44.	27.	137.	SCHEDULED NECROPSY DAY 20
26351	G	-13	. 5.	13.	1.	16.	42.	24.	88.	SCHEDULED NECROPSY DAY 20
26354	G	- 8	. 14.	15.	19.	15.	35.	29.	119.	SCHEDULED NECROPSY DAY 20
26358	G	1	. 13.	25.	17.	27.	45.	33.	161.	SCHEDULED NECROPSY DAY 20
26365	G	-6	17.	3.	23.	18.	33.	34.	122.	SCHEDULED NECROPSY DAY 20
26370	G	-6	. 10.	11.	10.	23.	36.	25.	109.	SCHEDULED NECROPSY DAY 20
26378	G	-5	. 15.	15.	16.	14.	37.	33.	125.	SCHEDULED NECROPSY DAY 20
26385	G	9	. 17.	7.	12.	19.	43.	26.	133.	SCHEDULED NECROPSY DAY 20
26388	G	-5	. 16.	7.	9.	12.	36.	23.	98.	SCHEDULED NECROPSY DAY 20
26397	G	1	. 12.	14.	11.	21.	32.	32.	123.	SCHEDULED NECROPSY DAY 20
26402	G	8	1.	22.	8.	18.	43.	23.	123.	SCHEDULED NECROPSY DAY 20
26409	G	3	. 4.	-5.	17.	21.	46.	35.	121.	SCHEDULED NECROPSY DAY 20
26419	G	-2	. 16.	11.	17.	19.	53.	27.	141.	SCHEDULED NECROPSY DAY 20
26421	G	-3	. 9.	10.	12.	16.	33.	29.	106.	SCHEDULED NECROPSY DAY 20
26424	G	3	. 15.	17.	17.	10.	31.	33.	126.	SCHEDULED NECROPSY DAY 20
26435	G	2	. 5.	13.	15.	14.	29.	33.	111.	SCHEDULED NECROPSY DAY 20
26437	G	6	. 9.	17.	11.	16.	47.	30.	136.	SCHEDULED NECROPSY DAY 20
26454	G	8	9.	6.	20.	10.	36.	28.	117.	SCHEDULED NECROPSY DAY 20
MEAN		-1	. 11.	12.	14.	18.	39.	30.	123.	
S.D.		6.3	5.6	6.5	5.4	6.5	6.2	5.1	17.0	
S.E.		1.2	1.1	1.3	1.1	1.3	1.2	1.0	3.4	
N		25	5 25	25	25	25	25	25	25	

TABLE A6

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHT CHANGES DURING GESTATION [G]

PREGN STA		DAY 0-	3	3 - 6	6- 9	9- 12	12- 15	15- 18	18- 20	0- 20	
DAMS	FROM	GROUP 4:	25	MG/KG/DAY							
26301	G		3.	5.	9.	17.	6.	29.	18.	81.	SCHEDULED NECROPSY DAY 20
26306	G	-1	8.	22.			16.	35.			SCHEDULED NECROPSY DAY 20
26313	G			6.	8.	19.	6.	34.	19.	95.	SCHEDULED NECROPSY DAY 20
26324		-		18.		8.	12.	17.	12.	65.	SCHEDULED NECROPSY DAY 20
26325	G	-	5.	16.	19.	12.	15.	29.	19.	105.	SCHEDULED NECROPSY DAY 20
26332	G	-1	0.	11.	13.	20.	17.	31.	29.	111.	SCHEDULED NECROPSY DAY 20
26334	G	-	1.	19.	10.	10.	5.	14.	9.	66.	SCHEDULED NECROPSY DAY 20
26345	G	-	9.	15.	20.	11.	4.	2.	8.	51.	SCHEDULED NECROPSY DAY 20
26353	G	-	7.	24.	-12.	26.	5.	23.	11.	70.	SCHEDULED NECROPSY DAY 20 SCHEDULED NECROPSY DAY 20
26357	G	-	8.	17.	10.	15.	15.	20.	32.	101.	SCHEDULED NECROPSY DAY 20
26372	G	-2	2.	8.	4.	21.	16.	22.	27.	76.	SCHEDULED NECROPSY DAY 20
26373	G	-	6.	15.	14.	7.	3.	20.	27.	80.	SCHEDULED NECROPSY DAY 20
26379	G	-1	4.	20.	7.	11.	4.	5.	7.	40.	SCHEDULED NECROPSY DAY 20
26387	G	-	2.	7.	5.	13.	16.	0.	38.	77.	SCHEDULED NECROPSY DAY 20 SCHEDULED NECROPSY DAY 20
26390	G	-	7.	10.	12.	17.	8.	27.	14.	81.	SCHEDULED NECROPSY DAY 20
26391	G		0.	12.	11.	18.	4.	24.	10.	79.	SCHEDULED NECROPSY DAY 20
26396	G		2.	4.	8.	20.	-1.	10.	-2.	41.	SCHEDULED NECROPSY DAY 20
26398	G		6.	19.	17.	8.	20.	37.		137.	SCHEDULED NECROPSY DAY 20
26399	G	1	1.	11.	11.	15.	6.	41.	29.	124.	SCHEDULED NECROPSY DAY 20
26400	G	-	5.	13.	16.	16.	15.	33.	11.	99.	SCHEDULED NECROPSY DAY 20
26404	G	-	4.	6.	13.	19.	13.	12.	24.	83.	SCHEDULED NECROPSY DAY 20
26408	G	-	8.	9.	9.	14.	19.	18.	1.	62.	SCHEDULED NECROPSY DAY 20
26415	G		6.	8.	10.	6.	12.	29.	21.	92.	SCHEDULED NECROPSY DAY 20
26425	G	-	6.	4.	11.	7.	12.	19.	16.	63.	SCHEDULED NECROPSY DAY 20
26431	G		1.	13.	8.	12.	15.	35.	17.	101.	SCHEDULED NECROPSY DAY 20
MEAN				12.		14.	11.	23.	19.	84.	
S.D.		7				5.2		11.1	10.6	24.7	
S.E.				1.2		1.0	1.2	2.2	2.1	4.9	
N			25	25	25	25	25	25	25	25	

PAGE 4

TABLE A6

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 5

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL BODY WEIGHT CHANGES DURING GESTATION [G]

PREGN STA	NANCY ATUS	DAY 0-	3	3- 6	6- 9	9- 12	12- 15	15- 18	18- 20	0- 20	
DAMS	FROM (GROUP 5:	50	MG/KG/DAY							
26311	G		1.	21.	14.	11.	17.	17.	10.	91.	SCHEDULED NECROPSY DAY 20
26314	G	-	19.	8.	13.	12.	16.	-28.	NA	NA	GRAVID, DIED DAY 19
26326	G		-5.	14.	10.	29.	-6.	-19.	4.	27.	SCHEDULED NECROPSY DAY 20
26333	G		-9.	7.	5.	11.	-1.	16.	12.	41.	SCHEDULED NECROPSY DAY 20
26339	G		-5.	7.	15.	11.	13.	-3.	5.	43.	SCHEDULED NECROPSY DAY 20
26347	G		-7.	22.	2.	17.	2.	-5.	6.	37.	SCHEDULED NECROPSY DAY 20
26356	G		-6.	19.	-3.	19.	3.	18.	6.	56.	SCHEDULED NECROPSY DAY 20
26360	G	_	11.	20.	8.	5.	16.	8.	10.	56.	SCHEDULED NECROPSY DAY 20
26376	G	_	18.	14.	1.	20.	4.	3.	9.	33.	SCHEDULED NECROPSY DAY 20
26377	G	-	20.	17.	11.	16.	-1.	15.	17.	55.	SCHEDULED NECROPSY DAY 20
26382	G		-2.	9.	10.	1.	-6.	5.	10.	27.	SCHEDULED NECROPSY DAY 20
26389	G	-	10.	8.	14.	10.	5.	-10.	-15.	2.	SCHEDULED NECROPSY DAY 20
26393	G		0.	8.	8.	10.	14.	15.	20.	75.	SCHEDULED NECROPSY DAY 20
26394	G	-	10.	9.	4.	4.	3.	8.	6.	24.	SCHEDULED NECROPSY DAY 20
26406	G		-4.	-2.	10.	8.	7.	8.	-20.	7.	SCHEDULED NECROPSY DAY 20
26411	NG		-4.	9.	10.	6.	-4.	-7.	6.	16.	SCHEDULED NECROPSY DAY 20
26413	G		-1.	7.	13.	3.	7.	11.	16.	56.	SCHEDULED NECROPSY DAY 20
26416	G	_	10.	19.	6.	27.	12.	-8.	39.	85.	SCHEDULED NECROPSY DAY 20
26427	G	-	12.	9.	11.	14.	1.	16.	20.	59.	SCHEDULED NECROPSY DAY 20
26428	G	_	10.	6.	10.	10.	12.	-36.	-9.	-17.	SCHEDULED NECROPSY DAY 20
26436	G	-	10.	9.	12.	16.	2.	9.	-14.	24.	SCHEDULED NECROPSY DAY 20
26443	G	-	29.	37.	2.	26.	3.	11.	12.	62.	SCHEDULED NECROPSY DAY 20
26444	G		-6.	-4.	5.	7.	0.	7.	5.	14.	SCHEDULED NECROPSY DAY 20
26448	G		-9.	4.	24.	11.	-4.	7.	-1.	32.	SCHEDULED NECROPSY DAY 20
26452	G	-	12.	17.	9.	13.	4.	NA	NA	NA	GRAVID, DIED DAY 18
MEAN			-9.	12.	9.	13.	5.	3.	7.	40.	
S.D.			6.9	8.7	5.7	7.3	6.9	14.6	13.1	26.8	
S.E.			1.4	1.8	1.2	1.5	1.4	3.0	2.8	5.7	
N			24	24	24	24	24	23	22	22	

 ${\tt G} = {\tt GRAVID} \quad {\tt NG} = {\tt NONGRAVID} \ - \ {\tt WEIGHT(S)} \ {\tt NOT} \ {\tt INCLUDED} \ {\tt IN} \ {\tt CALCULATION} \ {\tt OF} \ {\tt MEAN} \ {\tt NA} = {\tt NOT} \ {\tt APPLICABLE}$

PGBWv4.09 11/11/2011 R:12/16/2011

N

TABLE A7

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL GRAVID UTERINE WTS. AND NET BODY WT. CHANGES [G]

______ PREGNANCY INITIAL TERMINAL GRAVID NET BODY NET BODY STATUS BODY WT. BODY WT. UTERINE WT. WT. WT. CHANGE ______ DAM # GROUP 1: 0 MG/KG/DAY SHAM _____ 50.3 36.0 37.1 63.3 26302 G 250. 386. 85.7 300.3 386. 85.7 300.3
371. 80.0 291.0
400. 87.9 312.1
411. 95.7 315.3
425. 89.3 335.7
362. 87.1 274.9
394. 90.3 303.7
398. 89.0 309.0
270. NA NA
365. 89.3 275.7
384. 97.7 286.3
353. 71.9 281.1 255. 26304 G 26309 G 275. G 26312 252. G 26317 270. 65.7 235. 257. 39.9 G 26318 46.7 G 26327 G 262. 47.0 26330 251. 245. 244. NG 26349 NA 30.7 G 26368 26369 G 42.3 244. 242. 26380 G 37.1 G 383. 84.4 298.6 26383 56.6 G 368. 72.8 295.2 26384 244. 51.2 26395 G 253. 379. 95.1 283.9 30.9 75.1 26405 G 258. 373. 297.9 39.9 26407 G 244. 390. 86.9 303.1 59.1 G 26420 261. 397. 75.5 321.5 60.5 G 26426 254. 379. 91.3 287.7 33.7 G 273. 26430 421. 82.2 338.8 65.8 G 257. 376. 72.6 303.4 46.4 26432 G 224. 363. 64.3 298.7 26433 74.7 292.2 31.2 318.1 63.1 297.5 381. 88.8 292.2 389. 70.9 318.1 390. 92.5 297.5 G 261. 26434 G 255. 26447 G 26451 251. 46.5 84.0 9.05 MEAN 253. 385. 300.9 48.2 12.86 S.D. 11.7 18.1 16.68 3.41 2.63 S.E. 2.4 3.7 1.85

24

24

PAGE 1

 ${\tt G} = {\tt GRAVID}, \; {\tt NG} = {\tt NONGRAVID}, \; {\tt NOT} \; {\tt INCLUDED} \; {\tt IN} \; {\tt CALCULATION} \; {\tt OF} \; {\tt THE} \; {\tt MEAN} \; {\tt NA} = {\tt NOT} \; {\tt APPLICABLE}$

24

24

N

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL GRAVID UTERINE WTS. AND NET BODY WT. CHANGES [G]

______ PREGNANCY INITIAL TERMINAL GRAVID NET BODY NET BODY STATUS BODY WT. BODY WT. UTERINE WT. WT. WT. CHANGE DAM # GROUP 2: 0 MG/KG/DAY VEH. _____ 37.8 52.8 50.0 66.9 26303 G 245. 361. 78.2 282.8 37.8

 361.
 78.2
 282.8

 354.
 73.2
 280.8

 371.
 70.0
 301.0

 391.
 82.1
 308.9

 386.
 75.9
 310.1

 399.
 94.6
 304.4

 382.
 79.2
 302.8

 427.
 105.4
 321.6

 398.
 77.8
 320.2

 320.
 63.2
 256.8

 383.
 79.9
 302.1

 228. 26305 G 26315 G 251. G 26322 242. G 26331 261. 49.1 259. 252. 263. 273. 239. 45.4 G 26336 G 50.8 26337 G 58.6 26342 G 47.2 26344 17.8 G 26346 383. 79.9 303.1 389. 80.1 318.9 285. NA NA 26350 G 258. 45.1 257. 264. 247. 26352 G 318.9 61.9 NG 26355 NA 373. 68.8 304.2 394. 78.1 315.9 295. 13.0 282.0 26366 G 57.2 26371 G 258. 315.9 57.9 26386 G 232. 50.0 26392 G 235. 364. 80.5 283.5 48.5 G 26403 242. 372. 76.0 296.0 54.0 G 26414 243. 371. 87.6 283.4 40.4 260. 244 G 26418 400. 85.6 314.4 54.4 G 244. 367. 65.2 301.8 57.8 26423 G 87.5 313.5 52.5 26438 261. 401. 47.2

 402.
 100.8
 301.2

 346.
 61.4
 284.6

 G 254. 26439 252. G 26442 G 26453 265. 402. 79.6 322.4 57.4 MEAN 251. 377. 76.8 300.6 49.7 17.26 10.27 S.D. 11.3 28.7 16.50 5.9 3.52 3.37 2.10 S.E. 2.3

24

24

PAGE 2

 ${\tt G} = {\tt GRAVID}, \; {\tt NG} = {\tt NONGRAVID}, \; {\tt NOT} \; {\tt INCLUDED} \; {\tt IN} \; {\tt CALCULATION} \; {\tt OF} \; {\tt THE} \; {\tt MEAN} \; {\tt NA} = {\tt NOT} \; {\tt APPLICABLE}$

24

24

TABLE A7 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL GRAVID UTERINE WTS. AND NET BODY WT. CHANGES [G] SPONSOR: AMERICAN PETROLEUM

TERMINAL GRAVID PREGNANCY INITIAL NET BODY NET BODY 363. 75.0 288.0

272. 408. 78.5 329.5

243. 331. 57.5 273.5

243. 331. 57.5 273.5

26 231. 358. 71.7 286.3

26329 G 256. 402. 90.1 311.9

26341 G 279. 412. 78.0 334.0

26343 G 253. 390. 83.4 306.6

26351 G 247. 335. 75.5 259.5

26354 G 236. 355. 65.8 289.2

26358 G 244. 405. 82.9 322.1

26365 G 260. 382. 83.5 298.5 3

26370 G 253. 362. 67.2 294.8 4.

26378 G 241. 366. 63.2 302.8 61

26385 G 241. 366. 63.2 302.8 61

26385 G 235. 368. 73.3 294.7 59.

26388 G 252. 350. 76.3 273.7 21.

26397 G 242. 365. 73.3 291.7 49.7

26402 G 235. 358. 75.1 282.9 47

26402 G 235. 358. 75.1 282.9 47

26409 G 260. 381. 83.5 297.5

35 G 252. 363. 7

421 G 259. 365. 77.3

24 G 266. 392. 69

35 G 252. 363. 7

G 247. 38° STATUS BODY WT. BODY WT. UTERINE WT. WT. WT. CHANGE ______ 41.0 NA 57.5 30.5 55.3 76.1 21.9 4.4 25 MEAN 251. 374. 297.2 46.4 297.2 17.67 3.61 11.9 S.D. 14.16

24

2.89

24

PAGE 3

N G = GRAVID

S.E.

NA = NOT APPLICABLE

A = OBVIOUSLY ADVANCED BEYOND GESTATION DAY 20; WEIGHT NOT INCLUDED IN CALCULATIONS

4.4

2.4

TABLE A7 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR: AMERICAN PETROLEUM INDIVIDUAL GRAVID UTERINE WTS. AND NET BODY WT. CHANGES [G]

______ PREGNANCY INITIAL TERMINAL GRAVID NET BODY NET BODY STATUS BODY WT. BODY WT. UTERINE WT. WT. WT. CHANGE ______ DAM # GROUP 4: 25 MG/KG/DAY G 259. 340. 47.5 292.5 G 271. 390. 92.6 297.4 G 253. 348. 60.9 287.1 G 235. 300. 21.7 278.3 G 247. 352. 51.6 300.4 G 260. 371. 54.5 316.5 G 229. 295. 20.3 274.7 G 264. 315. 10.2 304.8 G 262. 332. 31.5 300.5 G 267. 368. 62.6 305.4 33.5 26.4 34.1 43.3 26301 26306 26313 26324 26325 53.4 56.5 26332 45.7 26334 26345 40.8 38.5 26353 38.4 26357 58.6 272.4 41.2 287.8 257. 249. 257. 248. 244. 264. 331. 26372 G 17.4 26373 G 329. 38.8 26379 G 297. 9.4 287.6 30.6 45.4 279.6 26387 G 325. 31.6 26390 G 325. 49.8 275.2 31.2 41.2 301.8 26391 G 343. 37.8 26396 G 272. 313. 4.8 308.2 36.2 G 86.0 297.0 26398 246. 383. 51.0 26399 G 255. 379. 61.4 317.6 62.6 G 243. 243. 26400 342. 69.8 272.2 29.2 G 326. 62.9 20.1 26404 263.1 G 255. 317. 30.5 286.5 31.5 26408 344. 61.0 337. 39.1 332 53.1 283.0 31.0 297.9 23.9 G 252. 26415 274. G 26425 26431 G 231. 332. 53.1 278.9 47.9 MEAN 253. 337. 46.7 290.7 37.3 290.7 14.47 2.89 337. 46.7 25.8 22.37 5.2 4.47 25 25 12.2 11.11 S.D. 2.4 25 2.4 2.22 S.E.

25

25

PAGE 4

N G = GRAVID SPONSOR: AMERICAN PETROLEUM

TABLE A7 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL GRAVID UTERINE WTS. AND NET BODY WT. CHANGES [G]

______ PREGNANCY INITIAL TERMINAL GRAVID NET BODY NET BODY STATUS BODY WT. BODY WT. UTERINE WT. WT. WT. CHANGE DAM # GROUP 5: 50 MG/KG/DAY 26311 G 258. 349. 32.1 316.9 26326 G 242. 269. 12.3 256.7 26333 G 268. 309. 23.6 285.4 26339 G 243. 286. 23.1 262.9 26347 G 236. 273. 6.5 266.5 26356 G 250. 306. 23.5 282.5 26360 G 260. 316. 18.2 297.8 26376 G 256. 289. 13.6 275.4 26377 G 245. 300. 20.7 279.3 26382 G 231. 258. 0.9 257.1 26389 G 247. 249. 14.0 235.0 26393 G 256. 331. 43.9 287.1 26394 G 243. 267. 3.4 263.6 58.9 14.7 17.4 19.9 G 242.
G 268.
G 243.
G 236.
G 250.
G 250.
G 256.
G 245.
G 247.
G 256.
G 243.
G 247.
G 258.
G 242.
NG 258.
G 267.
G 270.
G 248.
G 257.
G 284.
G 245. 30.5 32.5 37.8 19.4 34.3 26.1 -12.0 31.1 3.4 263.6 8.0 241.0 267. 26394 20.6 249. 26406 -1.0 274. NA NA
311. 3.5 307.5
352. 56.9 295.1
329. 27.3 301.7 26411 NA 26413 52.5 26416 28.1 26427 31.7 231. 1.7 229.3 281. 2.5 278.5 346. 25.1 320.9 259. 4.7 254.3 289. 27.3 261.7 26428 -18.7 26436 21.5 26443 36.9 26444 9.3 26448 4.7 MEAN 253. 293. 17.9 275.3 22.6 275.3 25.21 5.38 293. 17.9 34.8 14.47 18.53 3.95 S.D. 12.4 3.09 7.4 S.E. 2.6 N 22 22 22 22 22

G = GRAVID, NG = NONGRAVID, NOT INCLUDED IN CALCULATION OF THE MEAN NA = NOT APPLICABLE

> PUTv4.06 11/23/2011 R:12/16/2011

PAGE 5

TABLE A8

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

	NANCY TATUS	DAY 0-3	3- 6	6- 9	9-12	12-15	15-18	18-20	0-20
DAMS E	ROM GI	ROUP 1: 0 MG/I	KG/DAY SH	MA					
 26302	G	21.	23.	25.	26.	26.	33.	27.	26. SCHEDULED NECROPSY DAY 20
26304	G	19.	21.	20.	22.	25.	30.	29.	23. SCHEDULED NECROPSY DAY 20
26309	G	20.	21.	22.	25.	25.	28.	28.	24. SCHEDULED NECROPSY DAY 20
26312	G	20.	23.	26.	27.	31.	32.	34.	27. SCHEDULED NECROPSY DAY 20
26317	G	20.	22.	25.	24.	29.	36.	30.	27. SCHEDULED NECROPSY DAY 20
26318	G	16.	20.	22.	22.	24.	26.	25.	22. SCHEDULED NECROPSY DAY 20
26327	G	15.	19.	21.	21.	28.	29.	34.	23. SCHEDULED NECROPSY DAY 20
26330	G	20.	22.	24.	24.	27.	33.	30.	26. SCHEDULED NECROPSY DAY 20
26349	NG	14.	18.	22.	21.	19.	19.	22.	19. SCHEDULED NECROPSY DAY 20
26368	G	16.	17.	25.	25.	29.	29.	31.	24. SCHEDULED NECROPSY DAY 20
26369	G	17.	18.	21.	27.	27.	28.	30.	24. SCHEDULED NECROPSY DAY 20
26380	G	19.	21.	20.	24.	23.	29.	28.	23. SCHEDULED NECROPSY DAY 20
26383	G	19.	22.	25.	24.	25.	29.	31.	25. SCHEDULED NECROPSY DAY 20
26384	G	18.	20.	22.	22.	26.	26.	28.	23. SCHEDULED NECROPSY DAY 20
26395	G	15.	19.	23.	24.	28.	27.	33.	24. SCHEDULED NECROPSY DAY 20
26405	G	18.	20.	23.	NA	30.	26.	34.	25. SCHEDULED NECROPSY DAY 20
26407	G	24.	21.	26.	23.	27.	31.	28.	26. SCHEDULED NECROPSY DAY 20
26420	G	22.	21.	25.	26.	29.	33.	33.	27. SCHEDULED NECROPSY DAY 20
26426	G	16.	19.	26.	23.	28.	29.	28.	24. SCHEDULED NECROPSY DAY 20
26430	G	18.	24.	26.	26.	29.	32.	35.	27. SCHEDULED NECROPSY DAY 20
26432	G	16.	21.	23.	23.	24.	28.	27.	23. SCHEDULED NECROPSY DAY 20
26433	G	20.	22.	24.	24.	27.	26.	32.	25. SCHEDULED NECROPSY DAY 20
26434	G	19.	21.	22.	23.	25.	28.	31.	24. SCHEDULED NECROPSY DAY 20
26447	G	22.	23.	23.	26.	27.	28.	31.	26. SCHEDULED NECROPSY DAY 20
26451	G	21.	21.	24.	25.	27.	29.	29.	25. SCHEDULED NECROPSY DAY 20
MEAN		19.	21.	23.	24.	27.	29.	30.	25.
S.D.		2.4	1.7	1.9	1.7	2.0	2.7	2.7	1.5
S.E.		0.5	0.3	0.4	0.3	0.4	0.5	0.5	0.3
N		24	24	24	23	24	24	24	24

PAGE 1

 ${\tt G} = {\tt GRAVID} \quad {\tt NG} = {\tt NONGRAVID} \mbox{ - WEIGHT(S)} \mbox{ NOT INCLUDED IN CALCULATION OF MEAN NA = NOT APPLICABLE}$

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

PREGNANCY
STATUS DAY 0-3 3-6 6-9 9-12 12-15 15-18 18-20 0-20

PAGE 2

	GNANCY TATUS	DAY 0-3	3- 6	6- 9	9-12	12-15	15-18	18-20	0-20
DAMS	FROM GF	ROUP 2: 0 MG/K	KG/DAY VEI	н.					
26303	G	20.	21.	20.	22.	26.	28.	26.	23. SCHEDULED NECROPSY DAY 20
26305	G	21.	20.	22.	23.	24.	28.	26.	23. SCHEDULED NECROPSY DAY 20
26315	G	17.	20.	22.	26.	26.	31.	30.	24. SCHEDULED NECROPSY DAY 20
26322	G	21.	21.	26.	21.	29.	28.	31.	25. SCHEDULED NECROPSY DAY 20
26331	G	21.	22.	28.	27.	28.	34.	31.	27. SCHEDULED NECROPSY DAY 20
26336	G	22.	24.	25.	25.	27.	32.	29.	26. SCHEDULED NECROPSY DAY 20
26337	G	21.	23.	33.	27.	31.	29.	34.	28. SCHEDULED NECROPSY DAY 20
26342	G	21.	23.	28.	25.	32.	27.	39.	27. SCHEDULED NECROPSY DAY 20
26344	G	22.	20.	28.	26.	26.	31.	30.	26. SCHEDULED NECROPSY DAY 20
26346	G	16.	17.	20.	22.	25.	27.	24.	22. SCHEDULED NECROPSY DAY 20
26350	G	21.	23.	27.	24.	30.	29.	29.	26. SCHEDULED NECROPSY DAY 20
26352	G	19.	24.	28.	28.	33.	33.	32.	28. SCHEDULED NECROPSY DAY 20
26355	NG	18.	19.	29.	23.	26.	24.	31.	24. SCHEDULED NECROPSY DAY 20
26366	G	14.	21.	25.	23.	28.	28.	33.	24. SCHEDULED NECROPSY DAY 20
26371	G	23.	19.	28.	24.	28.	32.	31.	26. SCHEDULED NECROPSY DAY 20
26386	G	7.	10.	27.	20.	27.	26.	27.	20. SCHEDULED NECROPSY DAY 20
26392	G	17.	18.	21.	22.	30.	29.	30.	23. SCHEDULED NECROPSY DAY 20
26403	G	20.	22.	27.	24.	35.	33.	32.	27. SCHEDULED NECROPSY DAY 20
26414	G	15.	18.	23.	24.	31.	28.	33.	24. SCHEDULED NECROPSY DAY 20
26418	G	23.	24.	24.	28.	27.	29.	30.	26. SCHEDULED NECROPSY DAY 20
26423	G	18.	20.	26.	23.	28.	29.	31.	25. SCHEDULED NECROPSY DAY 20
26438	G	20.	22.	23.	24.	28.	31.	28.	25. SCHEDULED NECROPSY DAY 20
26439	G	21.	22.	23.	25.	26.	29.	28.	25. SCHEDULED NECROPSY DAY 20
26442	G	17.	20.	21.	22.	24.	28.	28.	23. SCHEDULED NECROPSY DAY 20
26453	G	21.	24.	23.	28.	26.	32.	30.	26. SCHEDULED NECROPSY DAY 20
MEAN		19.	21.	25.	24.	28.	30.	30.	25.
S.D.		3.6	3.1	3.2	2.3	2.8	2.2	3.1	2.0
S.E.		0.7	0.6	0.7	0.5	0.6	0.4	0.6	0.4
N		24	24	24	24	24	24	24	24

TABLE A8

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

	GNANCY								
Sī	ratus -	DAY 0-3	3 - 6	6- 9	9-12	12-15	15-18	18-20	0-20
DAMS I	FROM GI	ROUP 3: 5 MG	G/KG/DAY						
 26316	G	18.	18.	20.	22.	23.	28.	24.	22. SCHEDULED NECROPSY DAY 20
26319	G	19.	20.	25.	24.	28.	31.	28.	25. SCHEDULED NECROPSY DAY 20
26320	G	18.	22.	26.	26.	34.	32.	33.	
26323	G	15.	16.	21.	20.	24.	24.	25.	21. SCHEDULED NECROPSY DAY 20
26328	G	17.	19.	27.	24.	27.	28.	28.	24. SCHEDULED NECROPSY DAY 20
26329	G	19.	21.	31.	26.	28.	27.	33.	26. SCHEDULED NECROPSY DAY 20
26341	G	25.	26.	25.	29.	29.	21.	33.	27. SCHEDULED NECROPSY DAY 20
26343	G	16.	22.	23.	23.	25.	31.	32.	24. SCHEDULED NECROPSY DAY 20
26351	G	14.	15.	19.	21.	21.	24.	24.	20. SCHEDULED NECROPSY DAY 20
26354	G	26.	20.	24.	25.	24.	29.	29.	25. SCHEDULED NECROPSY DAY 20
26358	G	19.	21.	27.	26.	32.	13.	33.	24. SCHEDULED NECROPSY DAY 20
26365	G	19.	21.	22.	24.	27.	30.	27.	24. SCHEDULED NECROPSY DAY 20
26370	G	18.	17.	21.	24.	24.	27.	27.	23. SCHEDULED NECROPSY DAY 20
26378	G	17.	22.	25.	26.	28.	16.	31.	23. SCHEDULED NECROPSY DAY 20
26385	G	20.	22.	24.	24.	25.	30.	26.	24. SCHEDULED NECROPSY DAY 20
26388	G	18.	20.	20.	21.	25.	28.	26.	22. SCHEDULED NECROPSY DAY 20
26397	G	20.	20.	26.	25.	29.	28.	31.	25. SCHEDULED NECROPSY DAY 20
26402	G	20.	18.	24.	21.	28.	27.	26.	23. SCHEDULED NECROPSY DAY 20
26409	G	18.	19.	19.	22.	26.	30.	27.	23. SCHEDULED NECROPSY DAY 20
26419	G	18.	20.	21.	24.	24.	29.	27.	23. SCHEDULED NECROPSY DAY 20
26421	G	20.	22.	23.	26.	26.	27.	26.	24. SCHEDULED NECROPSY DAY 20
26424	G	18.	24.	28.	27.	28.	32.	34.	27. SCHEDULED NECROPSY DAY 20
26435	G	19.	20.	25.	24.	29.	27.	31.	25. SCHEDULED NECROPSY DAY 20
26437	G	20.	21.	24.	23.	27.	27.	29.	24. SCHEDULED NECROPSY DAY 20
26454	G	20.	20.	23.	23.	24.	29.	27.	23. SCHEDULED NECROPSY DAY 20
MEAN		19.	20.	24.	24.	27.	27.	29.	24.
S.D.		2.5		3.0		2.9	4.5	3.1	1.8
S.E.		0.5	0.5	0.6		0.6		0.6	0.4
N		25	25	25	25	25	25	25	25

PAGE 3

TABLE A8

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

PREG ST	NANCY ATUS	DAY 0-3	3- 6	6- 9	9-12	12-15	15-18	18-20	0-20
		ROUP 4: 25 I							
26301		16.	 19.	21.	24.	25.	27.	28.	23. SCHEDULED NECROPSY DAY 20
26306	G	15.	20.	25.	25.	27.	28.	30.	24. SCHEDULED NECROPSY DAY 20
26313	G	18.	18.	22.	21.	24.	24.	23.	21. SCHEDULED NECROPSY DAY 20
26324	G	13.	19.	22.	19.	25.	15.	27.	20. SCHEDULED NECROPSY DAY 20
26325	G	17.	20.	22.	23.	26.	28.	29.	23. SCHEDULED NECROPSY DAY 20
26332	G	17.	19.	23.	26.	27.	32.	31.	25. SCHEDULED NECROPSY DAY 20
26334	G	14.	20.	23.	21.	26.	25.	27.	22. SCHEDULED NECROPSY DAY 20
26345	G	14.	21.	26.	21.	27.	25.	27.	23. SCHEDULED NECROPSY DAY 20
26353	G	19.	22.	20.	27.	24.	28.	27.	24. SCHEDULED NECROPSY DAY 20
26357	G	15.	20.	25.	23.	26.	27.	32.	24. SCHEDULED NECROPSY DAY 20
26372	G	12.	19.	19.	25.	23.	26.	28.	21. SCHEDULED NECROPSY DAY 20
26373	G	18.	20.	22.	20.	23.	26.	28.	22. SCHEDULED NECROPSY DAY 20
26379	G	17.	20.	21.	24.	27.	25.	24.	22. SCHEDULED NECROPSY DAY 20
26387	G	17.	18.	21.	22.	28.	21.	35.	23. SCHEDULED NECROPSY DAY 20
26390	G	14.	17.	19.	20.	22.	24.	26.	20. SCHEDULED NECROPSY DAY 20
26391	G	18.	21.	22.	24.	23.	29.	26.	23. SCHEDULED NECROPSY DAY 20
26396	G	19.	19.	22.	25.	25.	27.	25.	23. SCHEDULED NECROPSY DAY 20
26398	G	20.	22.	29.	23.	26.	27.	28.	25. SCHEDULED NECROPSY DAY 20
26399	G	19.	21.	25.	25.	42.	15.	30.	25. SCHEDULED NECROPSY DAY 20
26400	G	16.	20.	24.	23.	25.	28.	23.	23. SCHEDULED NECROPSY DAY 20
26404	Ğ	16.	17.	21.	24.	24.	20.	20.	20. SCHEDULED NECROPSY DAY 20
26408	Ğ	17.	18.	20.	22.	24.	26.	25.	22. SCHEDULED NECROPSY DAY 20
26415	G	21.	21.	22.	22.	26.	29.	30.	24. SCHEDULED NECROPSY DAY 20
26425	G	19.	21.	26.	25.	29.	26.	30.	25. SCHEDULED NECROPSY DAY 20
26431	G	17.	21.	21.	24.	24.	27.	30.	
MEAN		17.	20.	23.	23.	26.	25.	28.	23.
S.D.		2.2	1.4	2.4	2.0	3.8	4.0	3.2	1.6
S.E.		0.4	0.3	0.5	0.4	0.8	0.8	0.6	0.3
N		25	25	25	25	25	25	25	25

PAGE 4

N

TABLE A8

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/ANIMAL/DAY]

PREGNANCY STATUS DAY 0-3 3-6 6-9 9-12 12-15 15-18 18-20 0-20 DAMS FROM GROUP 5: 50 MG/KG/DAY 26311 G 20. 22. 27. 26. 30. 24. SCHEDULED NECROPSY DAY 20 25. 23. 25. 23. 27. 20. 22. 24. 26. NA NA 21. 24. 24. 17. 21. 20. 20. 23. 26. 29. 23. 26. 29. 23. 26. 23. 23. 22. 20. 27. 23. 24. 38. 33. 41. 20. 18. 19. 26314 G NA GRAVID, DIED DAY 19 13. 15. 15. 26326 G 20. SCHEDULED NECROPSY DAY 20 26333 G 21. SCHEDULED NECROPSY DAY 20 15. 16. 26339 G 22. SCHEDULED NECROPSY DAY 20 19. 15. 21. SCHEDULED NECROPSY DAY 20 26347 G 20. 18. 27. SCHEDULED NECROPSY DAY 20 26356 G 14. 27. 20. 19. 28. 22. 28. 22. SCHEDULED NECROPSY DAY 20 26360 G 13. 19. 23. 20. 21. 24. 26376 G 27. 21. SCHEDULED NECROPSY DAY 20 26377 G 14. 17. 24. 20. 23. 26. 29. 21. SCHEDULED NECROPSY DAY 20 26382 G 13. 19. 26. 19. 19. 18. 27. 20. SCHEDULED NECROPSY DAY 20 26389 G 16. 18. 21. 20. 22. 17. 9. 18. SCHEDULED NECROPSY DAY 20 23. SCHEDULED NECROPSY DAY 20 26393 G 17. 19. 21. 22. 28. 25. 28. 19. SCHEDULED NECROPSY DAY 20 26394 G 15. 18. 19. 16. 19. 22. 26. 26406 G 16. 17. 21. 18. 20. 24. 15. 19. SCHEDULED NECROPSY DAY 20 21. 21. 26411 NG 18. 19. 22. 20. 24. 20. SCHEDULED NECROPSY DAY 20 26413 G 17. 21. 20. 22. 17. 24. 30. 21. SCHEDULED NECROPSY DAY 20 26416 G 14. 20. 23. 24. 29. 19. 31. 23. SCHEDULED NECROPSY DAY 20 26427 G 17. 21. 22. 22. 25. 27. 29. 23. SCHEDULED NECROPSY DAY 20 26428 G 15. 16. 19. 21. 23. 12. 16. 18. SCHEDULED NECROPSY DAY 20 26436 G 21. 20. 15. 18. 22. 22. NA 20. SCHEDULED NECROPSY DAY 20 27. 30. 26443 G 23. 24. 27. 24. SCHEDULED NECROPSY DAY 20 14. 22. 17. 20. 25. 26. 26444 G 18. 18. 19. 20. SCHEDULED NECROPSY DAY 20 19. 24. 22. 26. 22. 26448 G 16. 25. 22. SCHEDULED NECROPSY DAY 20 26452 G 14. 20. 20. 22. 26. NA NA NA GRAVID, DIED DAY 18 MEAN 15. 19. 21. 22. 24. 23. 26. 21. S.D. 1.8 1.8 2.1 2.2 4.5 6.6 2.1 4.6 0.4 S.E. 0.4 0.4 0.4 0.9 1.0 1.4 0.5

 ${\tt G} = {\tt GRAVID} \quad {\tt NG} = {\tt NONGRAVID} - {\tt WEIGHT(S)} \; {\tt NOT} \; {\tt INCLUDED} \; {\tt IN} \; {\tt CALCULATION} \; {\tt OF} \; {\tt MEAN} \; {\tt NA} = {\tt NOT} \; {\tt APPLICABLE}$

24

24

24

21

22

22

24

24

PGFWv4.11 11/11/2011 R:12/16/2011

PAGE 5

MEAN

S.D.

S.E.

N

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

PREGNANCY STATUS DAY 0-3 3-6 6-9 9-12 12-15 15-18 18-20 0-20 DAMS FROM GROUP 1: 0 MG/KG/DAY SHAM 84. 86. 99. 73. 87. SCHEDULED NECROPSY DAY 20 26302 G 90. 92. 90. 74. 79. 86. 74. 81. 78. 94. 92. 99. 82. 75. 89. 86. 94. 26304 G 75. 82. 79. SCHEDULED NECROPSY DAY 20 94. 82. 80. 73. 92. 87. 99. 74. 83. 72. 90. 92. 95. 78. 72. 82. 94. 89. 78. 26309 G 73. 75. SCHEDULED NECROPSY DAY 20 80. 26312 G 88. SCHEDULED NECROPSY DAY 20 79. 85. 87. 74. 76. 26317 G 83. SCHEDULED NECROPSY DAY 20 84. 96. 86. 68. 82. 81. 78. SCHEDULED NECROPSY DAY 20 26318 G 77. 81. 60. 77. 79. SCHEDULED NECROPSY DAY 20 26327 G 78. 85. 84. 85. 80. 84. SCHEDULED NECROPSY DAY 20 26330 G 57. 74. 86. 72. 79. 26349 NG 73. SCHEDULED NECROPSY DAY 20 75. 97. 104. 26368 G 68. 87. SCHEDULED NECROPSY DAY 20 104. 72. 91. 26369 G 69. 79. 96. 85. 82. 82. SCHEDULED NECROPSY DAY 20 78. 84. 83. 26380 G 77. 90. 94. 82. 82. SCHEDULED NECROPSY DAY 20 78. 84. SCHEDULED NECROPSY DAY 20 26383 G 84. 90. 82. 81. 88. 85. 73. 80. SCHEDULED NECROPSY DAY 20 26384 G 80. 85. 79. 89. 82. 80. 26395 G 60. 76. 87. 86. 96. 85. 92. 83. SCHEDULED NECROPSY DAY 20 26405 G 70. 77. 84. NA 100. 81. 97. 85. SCHEDULED NECROPSY DAY 20 26407 G 97. 81. 97. 81. 89. 93. 75. 87. SCHEDULED NECROPSY DAY 20 26420 G 83. 77. 88. 88. 93. 96. 86. 87. SCHEDULED NECROPSY DAY 20 85. 26426 G 65. 78. 101. 96. 89. 77. 83. SCHEDULED NECROPSY DAY 20 26430 G 66. 86. 88. 84. 89. 89. 88. 84. SCHEDULED NECROPSY DAY 20 26432 G 63. 77. 84. 81. 84. 78. 74. 76. SCHEDULED NECROPSY DAY 20 83. 93. 88. SCHEDULED NECROPSY DAY 20 26433 G 89. 86. 92. 86. 92. 87. 80. 82. 86. 86. 26434 G 73. 81. 81. SCHEDULED NECROPSY DAY 20 84. 90. 89. 85. 26447 G 84. 85. 82. 86. SCHEDULED NECROPSY DAY 20 26451 G 82. 79. 88. 87. 88. 86. 78. 83. SCHEDULED NECROPSY DAY 20

PAGE 1

 ${\tt G} = {\tt GRAVID} \quad {\tt NG} = {\tt NONGRAVID} \; - \; {\tt WEIGHT(S)} \; \; {\tt NOT} \; \; {\tt INCLUDED} \; \; {\tt IN} \; \; {\tt CALCULATION} \; \; {\tt OF} \; \; {\tt MEAN} \; \; {\tt NA} \; = \; {\tt NOT} \; \; {\tt APPLICABLE}$

87.

7.6

1.5

24

85.

5.9

1.2

23

89.

6.8

1.4

24

89.

5.7

1.2

24

82.

7.2

1.5

24

83.

3.7

0.8

24

81.

4.8

1.0

24

74.

9.0

1.8

N

TABLE A9 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/KG/DAY] PROJECT NO.:WIL-402016 SPONSOR : AMERICAN PETROLEUM

	GNANCY TATUS	DAY 0-3	3- 6	6- 9	9-12	12-15	15-18	18-20	0-20
DAMS	FROM GF	ROUP 2: 0 MG/1	KG/DAY VEI	н.					
26303		80.	83.	 79.	83.	93.	91.	75.	82. SCHEDULED NECROPSY DAY 20
26305	G	89.			86.		91.	77.	
		68.		83.	93.		97.	84.	
		85.		96.		94.	84.	83.	
		80.		101.	92.	91.	102.	84.	89. SCHEDULED NECROPSY DAY 20
26336				89.		86.	94.		
26337	G	83.	89.	120.	92.	101.	87.	93.	93. SCHEDULED NECROPSY DAY 20
26342	G	80.	85.	97.	82.	98.	77.	99.	85. SCHEDULED NECROPSY DAY 20
26344		80.		98.	86.	82.	91.	80.	83. SCHEDULED NECROPSY DAY 20
26346	G	68.	73.	83.	87.	94.	95.	78.	84. SCHEDULED NECROPSY DAY 20
26350	G	82.	89.	97.	82.	97.	85.	78.	86. SCHEDULED NECROPSY DAY 20
26352			93.	102.	95.	105.	96.	84.	92. SCHEDULED NECROPSY DAY 20
26355	NG	70.	75.	112.	85.	93.	86.	110.	89. SCHEDULED NECROPSY DAY 20
26366		58.	86.	95.	81.	93.	87.	93.	83. SCHEDULED NECROPSY DAY 20
26371		88.	72.	102.	82.	90.	93.	82.	85. SCHEDULED NECROPSY DAY 20
26386	G	33.	48.	114.	79.	103.	95.	94.	80. SCHEDULED NECROPSY DAY 20
26392	G	73.	76.	86.	84.	105.	94.	86.	
26403	G	82.	88.	102.	86.	118.	102.	90.	93. SCHEDULED NECROPSY DAY 20
26414	G	64.	77.	93.	90.	108.	89.	94.	86. SCHEDULED NECROPSY DAY 20
26418	G	86.	86.	84.	94.	85.	84.	79.	83. SCHEDULED NECROPSY DAY 20
26423	G	74	82.	100.	83.	97.	92.	89.	88. SCHEDULED NECROPSY DAY 20
26438	G	77.	82.	82.	82.	90.	89.	73.	81. SCHEDULED NECROPSY DAY 20
26439		81.	82.	83.	86.	84.	84.	73.	81. SCHEDULED NECROPSY DAY 20
26442	G	68.	79.	81.	82.	85.	93.	85.	82. SCHEDULED NECROPSY DAY 20
26453	G		88.	80.	93.	82.	93.	78.	83. SCHEDULED NECROPSY DAY 20
MEAN		76.	81.	93.		94.	91.	84.	85.
S.D.		12.0	9.0	10.9	5.5	9.2	5.8	7.3	3.7
S.E.		2.5	1.8	2.2	1.1	1.9	1.2	1.5	0.8
NT			2.4	2.4	2.4	2.4	2.4	2.4	3.4

PAGE 2

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

24

24

24

24

24

24

26437

MEAN

S.D.

S.E.

N

26454 G

G

80.

77.

75.

10.5

2.1

25

TABLE A9

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

PREGNANCY STATUS DAY 0-3 3-6 6-9 9-12 12-15 15-18 18-20 0-20 DAMS FROM GROUP 3: 5 MG/KG/DAY 72. 70. 80. 69. 76. SCHEDULED NECROPSY DAY 20 26316 G 76. 81. 88. 73. 78. 66. 80. 63. 69. 73. 80. 74. 80. 92. 93. 84. 92. 90. 86. 106. 90. 81. 91. 91. 26319 G 73. 82. SCHEDULED NECROPSY DAY 20 90. 85. 84. 79. 90. 82. 80. 87. 58. 83. 26320 G 66. 85. SCHEDULED NECROPSY DAY 20 26323 G 63. 91. 94. 80. SCHEDULED NECROPSY DAY 20 73. 89. 26328 G 108. 86. SCHEDULED NECROPSY DAY 20 74. 88. 91. 85. SCHEDULED NECROPSY DAY 20 26329 G 112. 89. 91. 87. 82. 82. SCHEDULED NECROPSY DAY 20 26341 G 82. 82. 79. 81. 91. 63. 85. 79. SCHEDULED NECROPSY DAY 20 26343 G 58. 83. 83. 77. 26351 G 63. 80. 74. 75. SCHEDULED NECROPSY DAY 20 96. 85. 94. 85. 94. 85. 91. SCHEDULED NECROPSY DAY 20 26354 G 112. 78. 85. 26358 G 83. 100. 89. 102. 37. 79. SCHEDULED NECROPSY DAY 20 74. 84. 26365 G 80. 81. 88. 90. 74. 80. SCHEDULED NECROPSY DAY 20 72. 77. 80. SCHEDULED NECROPSY DAY 20 26370 G 67. 80. 88. 83. 85. 71. 81. SCHEDULED NECROPSY DAY 20 26378 G 90. 97. 95. 97. 51. 89. 93. 26385 G 83. 87. 91. 88. 86. 73. 84. SCHEDULED NECROPSY DAY 20 26388 G 72. 78. 75. 76. 88. 91. 77. 77. SCHEDULED NECROPSY DAY 20 26397 G 82. 80. 99. 91. 100. 88. 89. 87. SCHEDULED NECROPSY DAY 20 82. SCHEDULED NECROPSY DAY 20 26402 G 84. 74. 94. 78. 99. 86. 75. 26409 G 69. 72. 72. 81. 90. 93. 74. 78. SCHEDULED NECROPSY DAY 20 26419 G 72. 78. 77. 84. 79. 86. 71. 77. SCHEDULED NECROPSY DAY 20 78. 93. 26421 G 84. 85. 88. 84. 74. 82. SCHEDULED NECROPSY DAY 20 87. 87. 93. 87. 90. 86. SCHEDULED NECROPSY DAY 20 26424 G 67. 96. 89. 78. 94. 99. 85. 26435 G 75. 86. 86. SCHEDULED NECROPSY DAY 20

91.

79.

90.

7.6

1.5

25

82.

89.

83.

2.8

25

13.9

79.

82.

4.0

0.8

25

75.

80.

6.5

1.3

25

81. SCHEDULED NECROPSY DAY 20

77. SCHEDULED NECROPSY DAY 20

PAGE 3

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN

89.

83.

89.

2.1

25

10.4

81.

80.

85.

5.2

1.0

25

81.

74.

79.

6.9

1.4

TABLE A9
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED
SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

PREGNANCY

PAGE 4

PR	EGNANCY STATUS	DAY 0	- 3	3- 6	6- 9	9-12	12-15	15-18	18-20	0-20	
DAMS	FROM (GROUP 4:	25	MG/KG/DAY							
26301	G	(62.	73.	79.	86.	86.	88.	85.	80.	SCHEDULED NECROPSY DAY 20
26306	G		57.	76.	89.	85.	87.	83.			SCHEDULED NECROPSY DAY 20
26313	G	-	71.	69.	83.	75.	82.	77.	68.		SCHEDULED NECROPSY DAY 20
26324	G		56.	80.	88.	75.	94.	54.	92.		SCHEDULED NECROPSY DAY 20
26325	G	(69.	80.	82.	81.	88.	88.	85.		SCHEDULED NECROPSY DAY 20
26332	G	(67.	74.	86.	92.	89.	98.	87.		SCHEDULED NECROPSY DAY 20
26334	G	6	61.	84.	91.	80.	96.	90.	93.		SCHEDULED NECROPSY DAY 20
26345			54.	80.	93.	71.	89.	82.	87.		SCHEDULED NECROPSY DAY 20
26353				82.	73.	96.	81.	90.	83.		SCHEDULED NECROPSY DAY 20
26357			57.	75.	89.	78.	84.	83.	91.		SCHEDULED NECROPSY DAY 20
26372			49.	80.	78.	98.	84.	89.	88.		SCHEDULED NECROPSY DAY 20
26373			73.	80.	83.	72.	82.	89.	89.		SCHEDULED NECROPSY DAY 20
26379			68.	79.	79.	87.	95.	87.	82.		SCHEDULED NECROPSY DAY 20
26387			69.	72.	82.	83.	100.	73.	114.		SCHEDULED NECROPSY DAY 20
26390			58.	70.	75.	75.	79.	81.	82.		SCHEDULED NECROPSY DAY 20
26391			68.	78.	78.	81.	75.	90.	77.		SCHEDULED NECROPSY DAY 20
26396			70.	69.	78.	84.	82.	87.	80.		SCHEDULED NECROPSY DAY 20
26398			80.	84.	104.	79.	85.	81.	76.		SCHEDULED NECROPSY DAY 20
26399			73.	77.	88.	84.	137.	45.	82.		SCHEDULED NECROPSY DAY 20
26400			66.	82.	93.	84.	86.	89.	68.		SCHEDULED NECROPSY DAY 20
26404			66.	70.	83.	90.	85.	68.	64.		SCHEDULED NECROPSY DAY 20
26408			68.	71.	77.	81.	83.	85.	79.		SCHEDULED NECROPSY DAY 20
26415			82.	80.	81.	79.	90.	94.	90.		SCHEDULED NECROPSY DAY 20
26425			70.	78.	94.	87.	98.	83.			SCHEDULED NECROPSY DAY 20
26431	G	-	73.	88.	84.	93.	88.	91.	93.	86.	SCHEDULED NECROPSY DAY 20
MEAN			66.	77.	84.	83.	89.	83.	84.	80.	
S.D.		3					11.7			3.9	
S.E.		1	1.6	1.0		1.4	2.3	2.4	2.0	0.8	
N			25	25	25	25	25	25	25	25	

SPONSOR: AMERICAN PETROLEUM

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FOOD CONSUMPTION DURING GESTATION [G/KG/DAY]

	GNANCY		2 6		0.10	10 15	15 10	10.00	0.00
S	TATUS	DAY 0-3	3 - 6	6- 9	9-12	12-15	15-18	18-20	0-20
DAMS	FROM GR	OUP 5: 50 M	IG/KG/DAY						
26311	G	77.	81.	87.	77.	86.	79.	87.	80. SCHEDULED NECROPSY DAY 20
26314	G	52.	82.	86.	90.	92.	NA	NA	NA GRAVID, DIED DAY 19
26326	G	63.	74.	82.	87.	84.	62.	79.	76. SCHEDULED NECROPSY DAY 20
26333	G	57.	72.	74.	72.	82.	90.	96.	75. SCHEDULED NECROPSY DAY 20
26339	G	62.	66.	91.	86.	104.	81.	92.	83. SCHEDULED NECROPSY DAY 20
26347	G	64.	79.	91.	88.	81.	74.	100.	82. SCHEDULED NECROPSY DAY 20
26356	G	73.	79.	88.	89.	135.	113.	135.	99. SCHEDULED NECROPSY DAY 20
26360	G	55.	77.	70.	79.	97.	89.	90.	78. SCHEDULED NECROPSY DAY 20
26376	G	53.	78.	79.	80.	87.	82.	95.	79. SCHEDULED NECROPSY DAY 20
26377	G	60.	73.	81.	88.	97.	87.	99.	80. SCHEDULED NECROPSY DAY 20
26382	G	57.	81.	107.	76.	77.	73.	107.	82. SCHEDULED NECROPSY DAY 20
26389	G	66.	75.	83.	76.	81.	63.	35.	70. SCHEDULED NECROPSY DAY 20
26393	G	66.	73.	78.	79.	97.	82.	87.	81. SCHEDULED NECROPSY DAY 20
26394	G	63.	76.	78.	65.	75.	86.	98.	76. SCHEDULED NECROPSY DAY 20
26406	G	67.	72.	87.	72.	78.	91.	58.	76. SCHEDULED NECROPSY DAY 20
26411	NG	70.	73.	82.	76.	76.	74.	89.	75. SCHEDULED NECROPSY DAY 20
26413	G	67.	81.	75.	80.	60.	83.	99.	76. SCHEDULED NECROPSY DAY 20
26416	G	53.	75.	82.	81.	92.	60.	93.	77. SCHEDULED NECROPSY DAY 20
26427	G	64.	80.	81.	77.	85.	90.	91.	80. SCHEDULED NECROPSY DAY 20
26428	G	62.	66.	76.	81.	85.	47.	68.	72. SCHEDULED NECROPSY DAY 20
26436	G	60.	71.	84.	80.	74.	NA	69.	74. SCHEDULED NECROPSY DAY 20
26443	G	52.	84.	75.	78.	84.	82.	88.	78. SCHEDULED NECROPSY DAY 20
26444	G	74.	72.	76.	78.	81.	100.	101.	81. SCHEDULED NECROPSY DAY 20
26448	G	63.	76.	95.	85.	77.	91.	76.	81. SCHEDULED NECROPSY DAY 20
26452	G	60.	85.	81.	85.	97.	NA	NA	NA GRAVID, DIED DAY 18
MEAN		62.	76.	83.	80.	87.	81.	88.	79.
S.D.		6.8	5.1	8.0	6.1	14.0	14.6	19.6	5.6
S.E.		1.4	1.0	1.6	1.2	2.9	3.2	4.2	1.2
N		24	24	24	24	24	21	22	22

G = GRAVID NG = NONGRAVID - WEIGHT(S) NOT INCLUDED IN CALCULATION OF MEAN NA = NOT APPLICABLE

PGFWv4.11 11/11/2011 R:12/16/2011

PAGE 5

Page 271 of 394

TABLE A10 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL MATERNAL MACROSCOPIC FINDINGS

PAGE 1

_	DAMS FROM GROUP 1: 0 MG/KG/DAY SHAM	MATE	ERNAL GROSS	OBSERVA'	TION
	26302	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26304	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26309	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26312	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26317	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26318	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26327	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26330	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26349	NONG	GRAVID AM	MONIUM S	SULFIDE NEGATIVE
	26368	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26369	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26380	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26383	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26384	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26395	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26405	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26407	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26420	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26426	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26430	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26432	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26433	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26434	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26447	NO S	SIGNIFICANT	CHANGES	OBSERVED
	26451	NO S	SIGNIFICANT	CHANGES	OBSERVED

Page 272 of 394

TABLE A10 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2 SPONSOR:AMERICAN PETROLEUM INDIVIDUAL MATERNAL MACROSCOPIC FINDINGS

	DAMS FROM GROUP 2: 0 MG/KG/DAY VEH.	MATERNAL GROSS OBSERVATION	
	26303	NO SIGNIFICANT CHANGES OBSERVED	
	26305	NO SIGNIFICANT CHANGES OBSERVED	
	26315	NO SIGNIFICANT CHANGES OBSERVED	
	26322	NO SIGNIFICANT CHANGES OBSERVED	
	26331	NO SIGNIFICANT CHANGES OBSERVED	
	26336	NO SIGNIFICANT CHANGES OBSERVED	
	26337	NO SIGNIFICANT CHANGES OBSERVED	
	26342	NO SIGNIFICANT CHANGES OBSERVED	
	26344	NO SIGNIFICANT CHANGES OBSERVED	
	26346	NO SIGNIFICANT CHANGES OBSERVED	
	26350	NO SIGNIFICANT CHANGES OBSERVED	
	26352	NO SIGNIFICANT CHANGES OBSERVED	
	26355	NONGRAVID AMMONIUM SULFIDE NEGATIVE	
	26366	NO SIGNIFICANT CHANGES OBSERVED	
	26371	NO SIGNIFICANT CHANGES OBSERVED	
,	26386	NO SIGNIFICANT CHANGES OBSERVED	
	26392	NO SIGNIFICANT CHANGES OBSERVED	
	26403	NO SIGNIFICANT CHANGES OBSERVED	
)	26414	NO SIGNIFICANT CHANGES OBSERVED	
ļ	26418	NO SIGNIFICANT CHANGES OBSERVED	
)	26423	NO SIGNIFICANT CHANGES OBSERVED	
	26438	NO SIGNIFICANT CHANGES OBSERVED	
,	26439	NO SIGNIFICANT CHANGES OBSERVED	
	26442	NO SIGNIFICANT CHANGES OBSERVED	
•	26453	NO SIGNIFICANT CHANGES OBSERVED	

PAGE 3

	DAMS FROM GROUP 3: 5 MG/KG/DAY	MATERNAL GROSS OBSERVATION
-	26316	NO SIGNIFICANT CHANGES OBSERVED
	26319	NO SIGNIFICANT CHANGES OBSERVED
	26320	NO SIGNIFICANT CHANGES OBSERVED
	26323	NO SIGNIFICANT CHANGES OBSERVED
	26328	NO SIGNIFICANT CHANGES OBSERVED
	26329	NO SIGNIFICANT CHANGES OBSERVED
	26341	NO SIGNIFICANT CHANGES OBSERVED
	26343	NO SIGNIFICANT CHANGES OBSERVED
	26351	NO SIGNIFICANT CHANGES OBSERVED
	26354	NO SIGNIFICANT CHANGES OBSERVED
	26358	DIAPHRAGM: HERNIA
		PORTION OF MEDIAN LOBE OF LIVER PROTRUDES INTO THORACIC
		CAVITY THROUGH AN OPENING IN THE DIAPHRAGM
	26365	NO SIGNIFICANT CHANGES OBSERVED
	26370	NO SIGNIFICANT CHANGES OBSERVED
Ρχ	26378	NO SIGNIFICANT CHANGES OBSERVED
ag	26385	NO SIGNIFICANT CHANGES OBSERVED
Õ	26388	NO SIGNIFICANT CHANGES OBSERVED
2	26397	NO SIGNIFICANT CHANGES OBSERVED
7	26402	NO SIGNIFICANT CHANGES OBSERVED
ω	26409	NO SIGNIFICANT CHANGES OBSERVED
of	26419	NO SIGNIFICANT CHANGES OBSERVED
Ü	26421	NO SIGNIFICANT CHANGES OBSERVED
94	26424	NO SIGNIFICANT CHANGES OBSERVED
4	26435	NO SIGNIFICANT CHANGES OBSERVED
	26437	NO SIGNIFICANT CHANGES OBSERVED
	26454	NO SIGNIFICANT CHANGES OBSERVED

TABLE A10 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL MATERNAL MACROSCOPIC FINDINGS

PAGE 4

	DAMS FROM GROUP 4: 25 MG/KG/DAY	MATERNAL GROSS OBSERVATION
_	26301	NO SIGNIFICANT CHANGES OBSERVED
	26306	NO SIGNIFICANT CHANGES OBSERVED
	26313	LIVER: AREA(S), WHITE
		ONE, 5 X 4 MM, LEFT LOBE
	26324	NO SIGNIFICANT CHANGES OBSERVED
	26325	NO SIGNIFICANT CHANGES OBSERVED
	26332	NO SIGNIFICANT CHANGES OBSERVED
	26334	NO SIGNIFICANT CHANGES OBSERVED
	26345	NO SIGNIFICANT CHANGES OBSERVED
	26353	NO SIGNIFICANT CHANGES OBSERVED
	26357	NO SIGNIFICANT CHANGES OBSERVED
	26372	NO SIGNIFICANT CHANGES OBSERVED
	26373	NO SIGNIFICANT CHANGES OBSERVED
	26379	NO SIGNIFICANT CHANGES OBSERVED
	26387	NO SIGNIFICANT CHANGES OBSERVED
,	26390	NO SIGNIFICANT CHANGES OBSERVED
	26391	NO SIGNIFICANT CHANGES OBSERVED
	26396	NO SIGNIFICANT CHANGES OBSERVED
)	26398	NO SIGNIFICANT CHANGES OBSERVED
1	26399	NO SIGNIFICANT CHANGES OBSERVED
•	26400	NO SIGNIFICANT CHANGES OBSERVED
	26404	NO SIGNIFICANT CHANGES OBSERVED
,	26408	NO SIGNIFICANT CHANGES OBSERVED
	26415	NO SIGNIFICANT CHANGES OBSERVED
	26425	NO SIGNIFICANT CHANGES OBSERVED

NO SIGNIFICANT CHANGES OBSERVED

Page 274 of 394

Page 275 of 394

INDIVIDUAL MATERNAL MACROSCOPIC FINDINGS

DAMS FROM GROUP 5: 50 MG/KG/DAY

MATERNAL GROSS OBSERVATION

NO SIGNIFICANT CHANGES OBSERVED

SKIN: MATTING, RED

UROGENITAL; NASAL

VAGINA: CONTENTS, DARK RED

DIED GESTATION DAY 19

UTERUS: LEFT- 1 LATE RESORPTION, 7 EARLY RESORPTIONS; RIGHT- 1

LATE RESORPTION, 7 EARLY RESORPTIONS
OVARIES: CORPORA LUTEA- 8, LEFT; 8, RIGHT

FETAL GROSS OBSERVATIONS

PAGE 5

	IN UTERO: 2 LATE RESORPTIONS, CROWN-RUMP LENGTHS: 1.5 CM,
	MUMMIFIED
26326	LIVER: AREA(S), WHITE
	ONE, 10 X 3 MM, MEDIAN LOBE

ONE, IO X 3 MM, MEDIAN LOBE
NO SIGNIFICANT CHANGES OBSERVED
NO SIGNIFICANT CHANGES OBSERVED
NO SIGNIFICANT CHANGES OBSERVED
UTERUS: CONTENTS, DARK RED
SURROUNDS SITES #8 THROUGH #14
NO SIGNIFICANT CHANGES OBSERVED
BRAIN: PALE

PITUITARY: PALE

26393

NO SIGNIFICANT CHANGES OBSERVED

NO SIGNIFICANT CHANGES OBSERVED

26406

NO SIGNIFICANT CHANGES OBSERVED

NONGRAVID -- AMMONIUM SULFIDE NEGATIVE

26413

NO SIGNIFICANT CHANGES OBSERVED

26416NO SIGNIFICANT CHANGES OBSERVED26427NO SIGNIFICANT CHANGES OBSERVED26428NO SIGNIFICANT CHANGES OBSERVED26436NO SIGNIFICANT CHANGES OBSERVED

TABLE A10

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL MATERNAL MACROSCOPIC FINDINGS

DAMS FROM GROUP 5: 50 MG/KG/DAY	MATERNAL GROSS OBSERVATION
26443	NO SIGNIFICANT CHANGES OBSERVED
26444	NO SIGNIFICANT CHANGES OBSERVED
26448	NO SIGNIFICANT CHANGES OBSERVED
26452	SKIN: MATTING, RED
	UROGENITAL; NASAL
	LIVER: PALE
	ALL LOBES
	BRAIN: PALE
	PITUITARY: PALE
	DIED GESTATION DAY 18
	UTERUS: LEFT- 2 LATE RESORPTIONS, 2 EARLY RESORPTIONS; RIGHT-
	2 LATE RESORPTIONS, 8 EARLY RESORPTIONS
	OVARIES: CORPORA LUTEA- 5, LEFT; 10, RIGHT
	FETAL GROSS OBSERVATIONS
	IN UTERO: 4 LATE RESORPTIONS, CROWN-RUMP LENGTHS: 1 TO
	1.5 CM, MUMMIFIED
	PMFGRDv4.16

10/27/2011 R:12/16/2011

PAGE 6

SPONSOR: AMERICAN PETROLEUM

Page 277 of 394

TABLE A11 (GESTATION DAY 20) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL ORGAN WEIGHTS [G]

PAGE 1

FEMALE GROUP: 0 MG/KG/DAY SHAM

26433	0.2100 0.1800 0.2890 0.4289 0.1454 0.2781 0.1544 0.2488 0.2893 0.1335
26384 G 26349 NG 1.88 10.74 26395 G 2.18 14.36 26405 G 2.00 15.17 26327 G 2.18 3 15.44 26426 G 2.15 14.85 26312 G 2.00 17.94 26368 G 2.00 17.94 26368 G 2.00 14.36 26318 G 2.07 14.88 26407 G 1.92 15.66 26451 G 26451 G 26451 G 1.92 15.66 26451 G 26451 G 26451 G 1.92 15.66 26451 G 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 26309 G 1.98 18.72 26309 G 1.91 16.45 26447 G 1.88 15.77	0.2890 0.4289 0.1454 0.2781 0.1544 0.2488 0.2893
26349 NG 1.88 10.74 26395 G 2.18 14.36 26405 G 2.00 15.77 26327 G 1.83 15.44 26426 G 2.15 14.85 26312 G 2.00 17.94 26368 G 2.06 14.36 26318 G 2.07 14.88 26407 G 1.92 15.66 26451 G 1.92 16.43 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.4289 0.1454 0.2781 0.1544 0.2488 0.2893
26395 G 2.18 14.36 26405 G 2.00 15.17 26327 G 1.83 15.44 26426 G 2.15 14.85 26312 G 2.00 17.94 26368 G 2.06 14.36 26318 G 2.07 14.88 26407 G 1.92 15.66 26451 G 1.92 15.66 26451 G 1.92 16.43 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.27 26317 G 1.98 18.72 26317 G 1.98 18.72 26309 G 1.91 16.45 26434 G 2.07 16.45 26447 G 1.88 16.87 26304 G 1.88 16.87	0.1454 0.2781 0.1544 0.2488 0.2893
26405 G 2.00 15.17 26327 G 1.83 15.44 26426 G 2.15 14.85 26312 G 2.00 17.94 26368 G 2.06 14.36 26318 G 2.07 14.88 26407 G 1.92 15.66 26451 G 2.05 15.20 26330 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26317 G 1.98 18.72 26309 G 1.91 16.45 26434 G 2.07 16.24 26447 G 1.88 15.77	0.2781 0.1544 0.2488 0.2893
26327 G 26426 G 2.15 26312 G 2.00 17.94 26368 G 2.06 26318 G 2.07 14.88 26407 G 26451 G 26451 G 26432 G 2.05 26330 G 2.01 18.27 26317 G 26317 G 1.98 18.72 26317 G 1.98 18.72 26317 G 1.98 18.72 26309 G 1.91 16.45 26447 G 26304 G 1.88 15.44 14.85 15.44 14.85 15.44 14.85 15.44 14.85 15.44 14.85 15.46 14.85 15.46 14.85 15.46 14.85 15.46 14.85 15.46 14.85 15.46 14.85 15.47	0.1544 0.2488 0.2893
26426 G 26312 G 26312 G 2.00 17.94 26368 G 2.06 14.36 26318 G 2.07 14.88 26407 G 26451 G 26451 G 26432 G 2.05 15.20 26330 G 2.05 15.20 26317 G 26317 G 1.98 18.77 26317 G 1.98 18.72 26344 G 26447 G 26447 G 1.88 15.77	0.2488 0.2893
26312	0.2893
26368 G 2.06 14.36 26318 G 2.07 14.88 26407 G 1.92 15.66 26451 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82	
26318 G 2.07 14.88 26407 G 1.92 15.66 26451 G 1.92 16.43 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82	0.1335
26451 G 1.92 16.43 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 1 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.1000
26451 G 1.92 16.43 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 1 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.1457
26451 G 1.92 16.43 26432 G 2.05 15.20 26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 1 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.2227
26330 G 2.01 18.27 26317 G 1.98 18.72 26309 G 1.91 16.45 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.2301
26317 G 1.98 18.72 26309 G 1.91 16.45 1 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.2450
26317 G 1.98 18.72 26309 G 1.91 16.45 1 26434 G 2.07 16.24 26447 G 1.88 16.87 26304 G 1.82 15.77	0.3363
¹ 26447 G 1.88 16.87 26304 G 1.82 15.77	0.3593
¹ 26447 G 1.88 16.87 26304 G 1.82 15.77	0.3241
¹ 26447 G 1.88 16.87 26304 G 1.82 15.77	0.1993
26304 G 1.82 15.77	0.2105
) 26302 G 1 94 16 79	0.2421
	0.1955
3 26369 G 1.88 16.70	0.1342
26380 G 1.82 14.96 26420 G 2.04 18.12	0.1286
26420 G 2.04 18.12	0.1853
26430 G 2.09 18.62	0.4537
MEAN 1.98 16.17	0.2309
	.08160
	.01666
N 24 24	24

TABLE A11 (GESTATION DAY 20) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL ORGAN WEIGHTS [G]

FEMALE GROUP: 0 MG/KG/DAY VEH.

PAGE 2

DD TONIA MONT		

	ANIMAL	PREGNANCY STATUS	BRAIN	LIVER	THYMUS
	26386	G	2.11	12.96	0.2188
	26392	G	1.95	14.03	0.1999
	26322	G	2.09	16.11	0.1854
	26366	G	2.06	16.30	0.1559
	26350	G	1.94	16.05	0.2100
	26342	G	2.17	17.03	0.1700
	26355	NG	1.93	12.31	0.3607
	26352	G	1.93	17.36	0.2978
	26337	G	1.92	15.60	0.2239
	26414	G	1.83	14.46	0.1339
	26403	G	1.97	16.38	0.1776
	26305	G	1.84	15.37	0.2134
	26315	G	1.89	15.77	0.2807
j	26336	G	1.98	16.14	0.2402
	26331	G	2.08	17.40	0.3717
	26344	G	1.97	16.51	0.2425
)	26453	G	2.00	17.09	0.3521
í	26418	G	2.02	16.87	0.2295
)	26371	G	1.91	15.76	0.2368
	26439	G	1.92	16.05	0.3819
,	26442	G	1.94	14.07	0.1887
)	26303	G	1.88	14.55	0.2068
	26346	G	1.86	12.03	0.1891
	26438	G	2.02	16.35	0.2420
	26423	G	1.87	15.99	0.2557
	MEAN		1.96	15.68	0.2335
	S.D.		0.090	1.363	0.06419
	S.E.		0.018	0.278	0.01310
	N		24	24	24
		NC - NONCENTITO METCHT	יכ אורים דאוכיווודים דאו כאוכיוו איידראו רב ייטב אבאא		

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

SPONSOR: AMERICAN PETROLEUM

Page 278 of 394

TABLE A11 (GESTATION DAY 20) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL-402016 PAGE 3 INDIVIDUAL ORGAN WEIGHTS [G] SPONSOR: AMERICAN PETROLEUM

FEMALE GROUP: 5 MG/KG/DAY

	PREGNANCY			
ANIMAL	STATUS	BRAIN	LIVER	THYM
26328	G	1.77	14.70	0.236
26402	G	1.97	14.80	0.277
26358	G	1.89	18.24	0.29
26388	G G	1.94	15.11	0.14
26329	G	2.04	15.50	0.22
26320	G	2.01	17.93	0.31
26424	G	2.08	19.81	0.26
26435	G	1.99	16.25	0.34
26419	G	2.08	16.68	0.19
26437	G	2.02	15.39	0.19
26397	G	1.91	15.71	0.24
26385	G	2.01	16.93	0.28
26316	G	1.92	15.74	0.19
26409	G	1.76	16.42	0.30
26365	G	2.05	16.48	0.26
26319	G	1.98	14.03	0.13
26341	G	2.00	20.75	0.43
26421	G G	1.85	14.92	0.22
26454	G	2.03	15.82	0.18
26343	G	1.90	16.39	0.15
26370	G	1.91	15.37	0.20
26351	G	1.96	14.31	0.14
26354	G	1.99	15.85	0.21
26378	G	1.90	16.96	0.21
26323	G	1.94	14.09	0.16
AN		1.96	16.17	0.23
D.		0.084	1.642	0.070
E.		0.017	0.328	0.014
1		25	25	

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

Page 279 of 394

TABLE All (GESTATION DAY 20) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL ORGAN WEIGHTS [G] FEMALE GROUP: 25 MG/KG/DAY

PAGE 4

PREGNANCY

ANIMAL	STATUS	BRAIN	LIVER	THYMUS
26334	G	2.01	14.41	0.2039
26324	G	1.76	14.62	0.1458
26398	G	1.99	18.50	0.2122
26373	G	1.86	17.01	0.1433
26313	G	1.99	15.03	0.1400
26345	G	1.95	16.70	0.3700
26391	G	2.10	16.56	0.1800
26379	G	1.97	14.87	0.1127
26387	G	2.00	15.21	0.1868
26390	G	2.09	15.57	0.2029
26400	G	1.93	15.64	0.1921
26404	G	1.91	13.65	0.1358
26399	G	1.99	19.15	0.1720
26301	G	1.92	15.62	0.1946
26332	G	1.95	17.40	0.2615
26357	G	2.07	17.53	0.2059
26396	G	1.99	14.78	0.2230
26353	G	1.97	16.96	0.2049
26372	G	1.90	14.78	0.1282
26408	G	1.86	15.64	0.1818
26415	G	2.00	16.90	0.1812
26325	G	2.14	18.46	0.1748
26431	G	1.89	15.59	0.1593
26306	G	1.95	18.58	0.0808
26425	G	2.06	16.77	0.1985
MEAN		1.97	16.24	0.1837
S.D.		0.085	1.478	0.05480
S.E.		0.017	0.296	0.01096
N		25	25	25
C - CDAVITI	D NC - MONCDAVID WETCHT	יכ אורים דאוכינוודים דאו כאו כיוו איידראו רבי ידעבי אובי		

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

Page 280 of 394

SPONSOR: AMERICAN PETROLEUM

TABLE A11 (GESTATION DAY 20) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL ORGAN WEIGHTS [G]

FEMALE GROUP: 50 MG/KG/DAY

ANI	PREGNI	ANCY ATUS	BRAIN	LIVER	THYMUS
26	5382	G	1.85	12.50	0.1163
26	5347	G	1.85	16.28	0.1551
26	5394	G	1.91	13.24	0.0943
26	5389	G	1.98	10.95	0.0900
26	5311	G	2.13	17.71	0.2100
26	5416	G	2.06	18.71	0.0920
26	5411	NG	1.98	13.63	0.1922
26	5448	G	2.04	13.85	0.1476
26	5428	G	1.97	11.11	0.1114
	5339	G	1.89	13.85	0.1475
26	5406	G	1.91	11.93	0.0965
26	5326	G	1.81	15.31	0.0714
	5377	G	1.94	16.35	0.1297
	5376	G	1.87	15.67	0.1505
	5360	G	2.03	16.52	0.0834
	5427	G	2.00	17.63	0.1385
	5443	G	2.08	19.59	0.1486
26	5436	G G	1.85	14.25	0.1807
	5413	G	2.02	17.31	0.1414
	5356	G	1.89	16.28	0.1409
	5444	G G G	1.85	14.05	0.1277
	5333	G	2.01	17.47	0.1515
	5393	G	1.77	16.48	0.1653
MEAN			1.94	15.32	0.1314
S.D.			0.096	2.419	0.03420
S.E.			0.021	0.516	0.00729
N			22	22	22

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

POFBWv4.29 11/11/2011 R:12/16/2011

PAGE 5

Page 281 of 394

TABLE A12 (GESTATION DAY 20) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR-AMERICAN PETROLEUM INDIVIDUAL ORGAN WEIGHTS PRIATIVE TO BRAIN WEIGHTS [G/100 G]

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL ORGAN WEIGHTS RELATIVE TO BRAIN WEIGHTS [G/100 G]

FEMALE GROUP: 0 MG/KG/DAY SHAM

PAGE 1

TERME GROOT OF HOPENING				
ANIMAL	PREGNANCY STATUS	BRAIN WT (GRAMS)	LIVER	THYMUS
26433	G	1.96	805.102	10.714
26383	G	1.91	803.665	9.424
26384	G	1.96	770.408	14.745
26349	NG	1.88	571.277	22.819
26395	G	2.18	658.716	6.651
26405	G	2.00	758.500	13.900
26327	G	1.83	843.716	8.415
26426	G	2.15	690.698	11.581
26312	G	2.00	897.000	14.450
26368	G	2.06	697.087	6.505
26318	G	2.07	718.841	7.053
26407	G	1.92	815.625	11.615
26451	G	1.92	855.729	11.979
26432	G	2.05	741.463	11.951
26330	G	2.01	908.955	16.716
26317	G	1.98	945.455	18.131
26309	G	1.91	861.257	16.963
26434	G	2.07	784.541	9.614
26447	G	1.88	897.340	11.223
26304	G	1.82	866.484	13.297
26302	G	1.94	865.464	10.103
26369	G	1.88	888.298	7.128
26380	G	1.82	821.978	7.088
26420	G	2.04	888.235	9.069
26430	G	2.09	890.909	21.722
EAN		1.98	819.811	11.668
D.		0.099	77.9996	3.9906
Ε.		0.020	15.9216	0.8146

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

Page 282 of 394

TABLE A12 (GESTATION DAY 20) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

PROJECT NO.:WIL-402016 PAGE 2 INDIVIDUAL ORGAN WEIGHTS RELATIVE TO BRAIN WEIGHTS [G/100 G] SPONSOR: AMERICAN PETROLEUM

FEMALE GROUP: 0 MG/KG/DAY VEH.

ANIMAL	PREGNANCY STATUS	BRAIN WT (GRAMS)	LIVER	THYMUS
26386	G	2.11	614.218	10.379
26392	G	1.95	719.487	10.256
26322	G	2.09	770.813	8.852
26366	G	2.06	791.262	7.573
26350	G	1.94	827.320	10.825
26342	G	2.17	784.793	7.834
26355	NG	1.93	637.824	18.705
26352	G	1.93	899.482	15.440
26337		1.92	812.500	11.667
26414	G	1.83	790.164	7.322
26403	G G G	1.97	831.472	9.036
26305	G	1.84	835.326	11.576
26315	G	1.89	834.392	14.868
26336	G G	1.98	815.151	12.121
26331	G	2.08	836.539	17.885
26344	G	1.97	838.071	12.335
26453	G	2.00	854.500	17.600
26418	G G	2.02	835.149	11.386
26371	G	1.91	825.131	12.408
26439	G	1.92	835.938	19.896
26442	G	1.94	725.258	9.742
26303	G	1.88	773.936	11.011
26346	G	1.86	646.774	10.161
26438	G	2.02	809.406	11.980
26423	G	1.87	855.080	13.690
EAN		1.96	798.423	11.910
D.		0.090	65.4161	3.2708
E.		0.018	13.3530	0.6677

24

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

Page 283 of 394

PROJECT NO.:WIL-402016 SPONSOR: AMERICAN PETROLEUM

Page 284 of 394

TABLE A12 (GESTATION DAY 20) RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL ORGAN WEIGHTS RELATIVE TO BRAIN WEIGHTS [G/100 G]

PAGE 3

FEMALE GROUP: 5 MG/KG/DAY

ANIMAL	PREGNANCY STATUS	BRAIN WT (GRAMS)	LIVER	ТНҮМТ
26328	G	1.77	830.508	13.333
26402	G	1.97	751.269	14.06
26358	G	1.89	965.079	15.60
26388	G	1.94	778.866	7.57
26329	G	2.04	759.804	10.78
26320	G	2.01	892.040	15.77
26424	G	2.08	952.404	12.88
26435	G	1.99	816.583	17.48
26419	G	2.08	801.923	9.42
26437	G	2.02	761.881	9.50
26397	G G	1.91	822.513	12.72
26385	G G	2.01	842.289	14.32
26316	G	1.92	819.792	10.26
26409	G	1.76	932.955	17.21
26365	G	2.05	803.902	12.82
26319	G	1.98	708.586	6.91
26341	G	2.00	1037.500	22.00
26421	G	1.85	806.486	12.43
26454	G	2.03	779.310	9.36
26343	G	1.90	862.632	8.26
26370	G	1.91	804.712	10.62
26351	G G G G	1.96	730.102	7.50
26354		1.99	796.482	11.05
26378	G	1.90	892.632	11.47
26323	G	1.94	726.289	8.66
AN		1.96	827.062	12.08
D.		0.084	80.6767	3.629
E.		0.017	16.1353	0.725
		25	25	2

TABLE A12 (GESTATION DAY 20) PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL ORGAN WEIGHTS RELATIVE TO BRAIN WEIGHTS [G/100 G]

SPONSOR: AMERICAN PETROLEUM INDIVIDUAL ORGAN WEIGHTS RELATIVE TO BRAIN WEIGHTS [G/100 G]

FEMALE GROUP: 25 MG/KG/DAY

PAGE 4

			TEMADE GROOT. 25 No/ Ro,	DAI	
	ANIMAL	PREGNANCY STATUS	BRAIN WT (GRAMS)	LIVER	THYMUS
	26334	G	2.01	716.915	10.149
	26324	G	1.76	830.682	8.295
	26398	G G	1.99	929.648	10.653
	26373	G	1.86	914.516	7.688
	26313	G	1.99	755.276	7.035
	26345	G	1.95	856.410	18.974
	26391	G	2.10	788.571	8.571
	26379	G	1.97	754.822	5.736
	26387	G G G	2.00	760.500	9.350
	26390	G	2.09	744.976	9.713
	26400	G	1.93	810.363	9.948
	26404	G	1.91	714.660	7.120
	26399	G G	1.99	962.312	8.643
,	26301	G	1.92	813.542	10.156
	26332	G G G	1.95	892.308	13.436
	26357	G	2.07	846.860	9.952
)	26396	G	1.99	742.714	11.206
	26353	G	1.97	860.914	10.406
1	26372	G	1.90	777.895	6.737
	26408	G	1.86	840.860	9.785
,	26415	G	2.00	845.000	9.050
,	26325	G G G	2.14	862.617	8.178
	26431	G	1.89	824.868	8.413
	26306	G	1.95	952.820	4.154
	26425	G	2.06	814.078	9.660
	MEAN		1.97	824.565	9.320
	S.D.		0.085	70.2748	2.7577
	S.E.		0.017	14.0550	0.5515
	N		25	25	25
	C CDATT	D MC MOMODATITO META	CHEC NOT INCHIDED IN CALCILIATION OF THE ME	7. NT	

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

Page 285 of 394

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL ORGAN WEIGHTS RELATIVE TO BRAIN WEIGHTS [G/100 G] PAGE 5

0.096

0.021

22

PREGNANCY BRAIN WT ANIMAL STATUS (GRAMS) LIVER THYMUS 1.85 675.676 3 G G G G G 1.85 880.000 8.378 1.91 693.194 4.921 1.98 553.030 4.545 26311 2.13 831.455 9.859 26416 2.06 908.252 4.466 1.98 26411 NG 688.384 9.697 G G G 2.04 26448 678.922 7.255 1.97 26428 563.959 5.635 26339 1.89 732.804 7.831 26406 1.91 624.607 5.079 G 26326 1.81 845.856 3.923 G 26377 1.94 842.784 6.701 26376 G 1.87 837.968 8.075 26360 G 2.03 813.793 4.089 G 26427 2.00 881.500 6.950 26443 G 2.08 941.827 7.163 G 26436 1.85 770.270 9.784 26413 G 2.02 856.931 6.980 G 26356 1.89 861.376 7.460 20444 G 26333 G 26393 G 1.85 759.459 6.919 2.01 7.562 869.154 1.77 931.073 9.322 MEAN 1.94 788.813 6.780 114.1607

24.3392

TABLE A12 (GESTATION DAY 20)

FEMALE GROUP: 50 MG/KG/DAY

G = GRAVID, NG = NONGRAVID - WEIGHTS NOT INCLUDED IN CALCULATION OF THE MEAN

POFBWv4.29 11/11/2011 R:12/16/2011

1.7663

0.3766

Page 286 of 394

S.D.

S.E.

N

TABLE A13 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL DATA AT SCHEDULED NECROPSY

PAGE 1

DAMS FROM GROUP 1: 0 MG/KG/DAY SHAM

			VIA	BLE FE	TUSES	DEA	D FETU	SES	EARLY	RESORP	TIONS	LATE	RESORP	TIONS	IMPLAN	TATION	SITES	CORP	ORA L	JTEA
DAM#	S	EX F	LEFT HORN	RIGHT HORN		LEFT HORN	RIGHT HORN		LEFT HORN	RIGHT HORN		LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL		RIGH' 'ARY	T TOTAL
26302	11	3	7	7	14	0	0	0	0	0	0	0	0	0	7	7	14	8	8	16
26304	9	6	6	9	15	0	0	0	1	0	1	0	0	0	7	9	16	7	9	16
26309	3	13	7	9	16	0	0	0	1	0	1	0	0	0	8	9	17	8	9	17
26312	6	9	5	10	15	0	0	0	0	1	1	0	0	0	5	11	16	5	11	16
26317	10	5	8	7	15	0	0	0	0	4	4	0	0	0	8	11	19	8	11	19
26318	6	8	9	5	14	0	0	0	0	0	0	0	0	0	9	5	14	9	5	14
26327	9	6	11	4	15	0	0	0	0	0	0	0	0	0	11	4	15	11	5	16
26330	10	7	8	9	17	0	0	0	0	1	1	0	0	0	8	10	18	8	10	18
26349	N	ONGRA	VID																	
26368	9	6	7	8	15	0	0	0	1	1	2	0	0	0	8	9	17	8	10	18
26369	6	10	5	11	16	0	0	0	0	1	1	0	0	0	5	12	17	5	12	17
26380	5	8	3	10	13	0	0	0	1	0	1	0	0	0	4	10	14	4	10	14
26383	9	4	7	6	13	0	0	0	1	0	1	0	0	0	8	6	14	8	7	15
26384	8	5	4	9	13	0	0	0	1	0	1	0	0	0	5	9	14	6	9	15
26395	6	10	11	5	16	0	0	0	0	0	0	0	0	0	11	5	16	11	5	16
26405	2	11	6	7	13	0	0	0	0	0	0	0	0	0	6	7	13	6	7	13
26407	12	4	6	10	16	0	0	0	0	0	0	0	0	0	6	10	16	6	10	16
26420	7	7	7	7	14	0	0	0	1	0	1	0	0	0	8	7	15	8	7	15
26426	11	5	6	10	16	0	0	0	0	0	0	0	0	0	6	10	16	6	11	17
26430	6	7	7	6	13	0	0	0	0	0	0	0	0	0	7	6	13	7	6	13
26432	8	5	6	7	13	0	0	0	1	1	2	0	0	0	7	8	15	7	8	15
26433	7	4	6	5	11	0	0	0	2	5	7	0	0	0	8	10	18	8	10	18
26434	7	7	7	7	14	0	0	0	2	0	2	0	0	0	9	7	16	9	7	16
26447	9	4	6	7	13	0	0	0	1	1	2	0	0	0	7	8	15	7	8	15
26451	10	6	5	11	16	0	0	0	0	0	0	0	0	0	5	11	16	5	11	16
TOTAL		160	160	186	346	0	0	0	13	15	28	0	0	0	173	201	374	175	206	381
	7.8	6.7	6.7	7.8	14.4	0.0	0.0	0.0	0.5	0.6	1.2	0.0	0.0	0.0	7.2	8.4	15.6	7.3	8.6	15.9
S.D. 2			1.86	2.03	1.47	0.00	0.00	0.00	0.66	1.28	1.58	0.00	0.00	0.00	1.79	2.18	1.59	1.76	2.10	1.54
S.E. 0 N =).51 24	0.51	0.38	0.41	0.30	0.00	0.00	0.00	0.13	0.26	0.32	0.00	0.00	0.00	0.37	0.45	0.32	0.36	0.43	0.31

Page 287 of 394

TABLE A13 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL DATA AT SCHEDULED NECROPSY

PAGE 2

DAMS FROM GROUP 2: 0 MG/KG/DAY VEH.

	VIABLE FETUSES					DEA	D FETU	ISES	EARLY	RESORE	TIONS	LATE	RESORF	PTIONS	IMPLAN	TATION	SITES	CORP	ORA LU	JTEA
DAM#	S	EX F	LEFT HORN	RIGHT HORN	r TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL		RIGHT ARY	TOTAL
26303	 4	10	4	10	14	0	0	0	1	0	1	0	0	0		10	15	5	10	15
26305	4	9	8	5	13	Ō	0	0	1	0	1	0	0	0	9	5	14	9	5	14
26315	9	3	3	9	12	0	0	0	3	1	4	0	0	0	6	10	16	7	10	17
26322	8	8	9	7	16	0	0	0	0	0	0	0	0	0	9	7	16	9	7	16
26331	8	6	10	4	14	0	0	0	0	1	1	0	0	0	10	5	15	11	5	16
26336	9	7	8	8	16	0	0	0	0	0	0	0	0	0	8	8	16	8	8	16
26337	9	4	5	8	13	0	0	0	1	0	1	0	0	0	6	8	14	7	8	15
26342	11	6	6	11	17	0	0	0	0	0	0	0	0	0	6	11	17	6	11	17
26344	6	8	7	7	14	0	0	0	1	0	1	0	0	0	8	7	15	8	7	15
26346	6	6	7	5	12	0	0	0	1	1	2	0	0	0	8	6	14	9	7	16
26350	6	7	6	7	13	0	0	0	1	2	3	0	0	0	7	9	16	8	9	17
26352	7	6	8	5	13	0	0	0	0	0	0	0	0	0	8	5	13	8	7	15
26355	N	IONGRA	VID																	
26366	5	7	4	8	12	0	0	0	0	0	0	0	0	0	4	8	12	7	8	15
26371	6	8	8	6	14	0	0	0	1	0	1	0	0	0	9	6	15	12	9	21
26386	2	0	2	0	2	0	0	0	0	0	0	0	0	0	2	0	2	2	3	5
26392	6	7	6	7	13	0	0	0	0	0	0	0	0	0	6	7	13	6	7	13
26403	6	7	3	10	13	0	0	0	0	0	0	0	0	0	3	10	13	3	10	13
26414	4	12	9	7	16	0	0	0	0	0	0	0	0	0	9	7	16	11	7	18
26418	12	4	8	8	16	0	0	0	0	2	2	0	0	0	8	10	18	8	10	18
26423	9	3	6	6	12	0	0	0	1	2	3	0	0	0	7	8	15	7	8	15
26438	9	6	5	10	15	0	0	0	0	0	0	0	0	0	5	10	15	. 5	10	15
26439	7	10	8	9	17	0	0	0	2	0	2	0	0	0	10	9	19	10	9	19
26442	6	5	6	5	11	0	0	0	2	0	2	0	0	0	8	5	13	8	6	14
26453	9	5	5	9	14	0	0	0	0	0	0	0	0	0	5	9	14	5	10	15
TOTAL		154	151	171	322	0	0	0	15	9	24	0	0	0	166	180	346	179	191	370
MEAN	7.0	6.4	6.3	7.1	13.4	0.0	0.0	0.0	0.6	0.4	1.0	0.0	0.0	0.0	6.9	7.5	14.4	7.5	8.0	15.4
S.D. 2			2.12	2.42	2.96	0.00	0.00	0.00	0.82	0.71	1.18	0.00	0.00	0.00	2.15	2.45	3.12	2.41	1.97	2.89
S.E. (N =	0.49 24	0.53	0.43	0.49	0.60	0.00	0.00	0.00	0.17	0.15	0.24	0.00	0.00	0.00	0.44	0.50	0.64	0.49	0.40	0.59

Page 288 of 394

TABLE A13 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL DATA AT SCHEDULED NECROPSY

PAGE 3

DAMS FROM GROUP 3: 5 MG/KG/DAY

			VIA	BLE FE	ETUSES	DEA	D FETU	JSES	EARLY	RESORE	PTIONS	LATE	RESORF	TIONS	IMPLAN	TATION	SITES	CORP	ORA LU	JTEA
DAM#	S M	EX F	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL		RIGH'	TOTAL
26316	10	5		9	15	0	0	0	0	0	0	0	0	0		9	15		9	15
26319	10	3	4	9	13	0	0	0	2	Ō	2	0	0	0	6	9	15	6	9	15
26320	4	10	6	8	14	0	0	0	0	1	1	0	0	0	6	9	15	6	10	16
26323	6	4	6	4	10	0	0	0	1	1	2	0	0	0	7	5	12	7	5	12
26328	5	8	6	7	13	0	0	0	0	0	0	0	0	0	6	7	13	6	7	13
26329	8	8	6	10	16	0	0	0	0	0	0	0	0	0	6	10	16	6	10	16
26341	7	7	7	7	14	0	0	0	2	0	2	1	0	1	10	7	17	10	8	18
26343	13	2	9	6	15	0	0	0	0	1	1	0	0	0	9	7	16	9	8	17
26351	7	7	6	8	14	0	0	0	1	1	2	0	0	0	7	9	16	7	10	17
26354	7	6	6	7	13	0	0	0	1	2	3	0	1	1	7	10	17	8	10	18
26358	7	7	8	6	14	0	0	0	0	0	0	0	0	0	8	6	14	8	6	14
26365	8	6	5	9	14	0	0	0	0	0	0	0	0	0	5	9	14	6	11	17
26370	8	4	9	3	12	0	0	0	1	0	1	0	0	0	10	3	13	11	5	16
26378	2	10	4	8	12	0	0	0	0	1	1	0	0	0	4	9	13	4	9	13
26385	7	6	6	7	13	0	0	0	2	1	3	0	0	0	8	8	16	8	8	16
26388	7	7	6	8	14	0	0	0	0	0	0	0	0	0	6	8	14	6	8	14
26397	6	6	5	7	12	0	0	0	1	0	1	0	0	0	6	7	13	6	7	13
26402	6	8	7	7	14	0	0	0	0	0	0	0	0	0	7	7	14	7	8	15
26409	3	11	9	5	14	0	0	0	1	0	1	0	0	0	10	5	15	10	8	18
26419	5	11	11	5	16	0	0	0	0	0	0	0	0	0	11	5	16	11	5	16
26421	4	10	7	7	14	0	0	0	0	3	3	0	0	0	7	10	17	7	11	18
26424	3	8 9	4	8	12	0	0	0	2	U T	3	0	0	0	6	9 8	15	7 5	9 8	16 13
26435	-		4	8 7	12	0	-	•	1	•	1	U	0	-	4	-	12			
26437	9	6 6	10	, 5	15 15	0	0	0	2	0	2	0	0	1	9 12	8 5	17 17	9 12	8 5	17 17
26454	9	6	10	5	15	U	U	U	2	U	2	U	U	U	12	5	1/	12	5	1/
TOTAL		175	165	175	340	0	0	0	17	12	29	1	2	3	183	189	372	188	202	390
	6.6	7.0	6.6	7.0	13.6	0.0	0.0	0.0	0.7	0.5	1.2	0.0	0.1	0.1	7.3	7.6	14.9	7.5	8.1	15.6
S.D. 2			1.91	1.66	1.41	0.00	0.00	0.00	0.80	0.77	1.11	0.20	0.28	0.33	2.10	1.87	1.62	2.04	1.82	1.83
S.E. 0 N =	25	0.48	0.38	0.33	0.28	0.00	0.00	0.00	0.16	0.15	0.22	0.04	0.06	0.07	0.42	0.37	0.32	0.41	0.36	0.37

Page 289 of 394

PAGE 4

DAMS FROM GROUP 4: 25 MG/KG/DAY

			VIA	BLE FE	TUSES	DEA	D FETU	JSES	EARLY	RESORE	PTIONS	LATE	RESORF	TIONS	IMPLAN	TATION	SITES	CORP	ORA LU	JTEA
DAM#	 S M	EX F	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN		TOTAL	LEFT HORN	RIGHT HORN	TOTAL	LEFT HORN	RIGHT HORN	TOTAL		RIGHT ARY	TOTAL
26301	6	3	4	5	9	0	0	0	5	2	7	0	0	0	9	7	16	12	9	21
26306	12	7	6	13	19	0	0	0	1	1	2	0	0	0	7	14	21	7	14	21
26313	6	5	4	7	11	0	0	0	2	5	7	0	0	0	6	12	18	6	12	18
26324	2	1	2	1	3	0	0	0	1	0	1	0	0	0	3	1	4	4	6	10
26325	4	5	4	5	9	0	0	0	4	2	6	0	0	0	8	7	15	8	7	15
26332	4	6	5	5	10	0	0	0	2	4	6	0	0	0	7	9	16	7	9	16
26334	1	2	2	1	3	0	0	0	2	4	6	0	0	0	4	5	9	10	7	17
26345	1	0	0	1	1	0	0	0	8	8	16	0	0	0	8	9	17	8	9	17
26353	1	4	2	3	5	0	0	0	5	3	8	0	0	0	7	6	13	7	6	13
26357	5	7	4	8	12	0	0	0	3	4	7	0	0	0	7	12	19	7	15	22
26372	3	9	6	6	12	0	0	0	2	1	3	0	0	0	8	7	15	9	7	16
26373	4	3	4	3	7	1	0	1	2	3	5	0	0	0	7	6	13	7	6	13
26379	0	1	0	1	1	0	0	0	6	6	12	0	0	0	6	7	13	7	7	14
26387	4	4	4	4	8	0	0	0	5	2	7	0	0	0	9	6	15	9	6	15
26390	3	7	4	6	10	0	0	0	2	2	4	0	0	0	6	8	14	7	8	15
26391	5	2	4	3	7	0	0	0	7	3	10	0	0	0	11	6	17	12	6	18
26396	0	0	0	0	0	0	0	0	6	10	16	0	0	0	6	10	16	6	11	17
26398	10	5	9	6	15	0	0	0	0	0	0	0	1	1	9	7	16	9	7	16
26399	7	5	3	9	12	0	0	0	3	1	4	0	0	0	6	10	16	6	10	16
26400	8	5	2	11	13	0	0	0	1	0	1	0	0	0	3	11	14	3	11	14
26404	./	5	6	6	12	0	0	0	2	0	2	0	0	0	8	6	14	8	6	14
26408	4	Ţ	2	3	5	0	0	0	2	6	8	0	0	0	4	9	13	5	9	14
26415	8	3	4	7	11	0	0	0	Ţ	3	4	0	0	0	5	10	15	6	10	16
26425	4	3 5	2	5 8	7	0	0	0	/	4	11	0	0	0	9	9	18	9	9	18
26431	6	5	3	8	11	0	0	0	1	1	2	0	1	1	4	10	14	5	11	16
TOTAL	115	98	86	127	213	1	0	1	80	75	155	0	2	2	167	204	371	184	218	402
MEAN	4.6	3.9	3.4	5.1	8.5	0.0	0.0	0.0	3.2	3.0	6.2	0.0	0.1	0.1	6.7	8.2	14.8	7.4	8.7	16.1
S.D. 3			2.08	3.24	4.66	0.20	0.00	0.20	2.27	2.55	4.30	0.00	0.28	0.28	2.06	2.73	3.29	2.16	2.56	2.69
S.E. C		0.47	0.42	0.65	0.93	0.04	0.00	0.04	0.45	0.51	0.86	0.00	0.06	0.06	0.41	0.55	0.66	0.43	0.51	0.54
N =	25																			

Page 290 of 394

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL DATA AT SCHEDULED NECROPSY

SPONSOR:AMERICAN PEIROLEUM INDIVIDUAL FEIAL DATA AT SCHEDULED NECROPSY

DAMS FROM GROUP 5: 50 MG/KG/DAY

		VIABLE FETU			TUSES	DEA	D FETU	SES	EARLY	RESORP	TIONS	LATE	RESORP	TIONS	IMPLAN	TATION	SITES	CORP	ORA LU	TEA
DAM		EX F			TOTAL	LEFT	RIGHT	попат	LEFT	RIGHT HORN		LEFT HORN	RIGHT	TOTAL	LEFT	RIGHT HORN			RIGHT	TOTAL
DAM#	М	r	HORN	HORN	TOTAL	HORN	HORN	TOTAL	HORN	HORN	TOTAL	HORN	HORN	TOTAL	HORN	HORN	TOTAL	OV	ARY	TOTAL
26311	3	2	2	3	5	0	0	0	7	3	10	0	0	0	9	6	15	9	6	15
26314		AVID.	DIED D	_	,	· ·	Ü	0	,	3		· ·	· ·	Ü		O	10		· ·	13
26326		1	1	0	1	0	0	0	6	8	14	0	0	0	7	8	15	7	8	15
26333		4	1	3	4	0	0	0	11	7	18	0	0	0	12	10	22	12	10	22
26339		2	1	3	4	0	0	0		3	9	0	0	0	7	- 6	13		- 6	14
26347		0	0	0	0	0	0	0	6	7	13	0	0	0	6	7	13	6	7	13
26356	1	3	1	3	4	0	0	0	6	4	10	0	0	0	7	7	14	7	8	15
26360	1	1	0	2	2	0	0	0	8	6	14	0	1	1	8	9	17	8	9	17
26376	0	1	0	1	1	0	0	0	9	8	17	0	1	1	9	10	19	9	10	19
26377	1	3	4	0	4	0	0	0	3	5	8	0	0	0	7	5	12	7	5	12
26382	0	0	0	0	0	0	0	0	2	0	2	0	0	0	2	0	2	3	5	8
26389	1	1	1	1	2	0	0	0	3	8	11	0	0	0	4	9	13	5	9	14
26393	5	3	4	4	8	0	0	0	6	5	11	0	0	0	10	9	19	10	10	20
26394	0	0	0	0	0	0	0	0	6	8	14	0	0	0	6	8	14	6	9	15
26406	0	0	0	0	0	0	0	0	8	4	12	0	1	1	8	5	13	8	5	13
26411		ONGRA	VID																	
26413	0	0	0	0	0	0	0	0	7	7	14	0	0	0	7	7	14	8	7	15
26416		3	5	6	11	0	0	0	2	1	3	0	1	1	7	8	15	7	8	15
26427		0	2	3	5	0	0	0	5	7	12	0	0	0	7	10	17	8	11	19
26428		0	0	0	0	0	0	0	6	10	16	0	0	0	6	10	16	6	10	16
26436		0	0	0	0	0	0	0	6	7	13	0	0	0	6	7	13	6	7	13
26443		2	2	2	4	0	0	0	3	8	11	0	0	0	5	10	15	5	10	15
26444		0	0	0	0	0	0	0	8	8	16	0	0	0	8	8	16	8	8	16
26448		_	0	4	4	0	0	0	7	4	11	1	1	2	8	9	17	9	9	18
26452	GR	3 0 4 RAVID, DIED DAY 18																		
TOTAL	30	29	24	35	59	0	0	0	131	128	259	1	5	6	156	168	324	162	177	339
MEAN	1.4	1.3	1.1	1.6	2.7	0.0	0.0	0.0	6.0	5.8	11.8	0.0	0.2	0.3	7.1	7.6	14.7	7.4	8.0	15.4
S.D.			1.51	1.79	2.95	0.00	0.00	0.00	2.28	2.56	3.95	0.21	0.43	0.55	2.04	2.34	3.74	1.92	1.84	3.00
S.E.			0.32	0.38	0.63	0.00	0.00	0.00	0.49	0.55	0.84	0.05	0.09	0.12	0.44	0.50	0.80	0.41	0.39	0.64
N =	22	0.25	0.52	0.50	0.05	0.00	0.00	0.00	0.15	0.55	0.01	0.05	0.05	0.12	0.11	0.50	0.00	0.11	0.00	0.01

PLRDv4.08 11/23/2011 R:12/16/2011

PAGE 5

PAGE 1

DAMS FROM GROUP 1:0 MG/KG/DAY SHAM

	CODDODA	TMDI AMBABIAN	חחח	Hana	DEC	ODDETO	MO	PRE-	POST-			
DAM	CORPORA # LUTEA	IMPLANTATION SITES			RES EARLY				LOSS	MALES	FEMALES	
	#	#	%	%	%	%	%	%	% 	%	%	
2630		14.0 16.0		0.0	0.0		0.0	12.5	0.0 6.3 5.9	78.6	21.4	
2630	16.0	16.0	93.8	0.0	6.3	0.0	6.3	0.0	6.3	60.0	40.0	
2630	09 17.0	17.0	94.1	0.0	5.9	0.0	5.9	0.0	5.9	18.8	81.3	
2631	12 16.0	16.0	93.8	0.0	6.3	0.0	6.3	0.0	6.3	40.0	60.0	
2631	17 19.0	19.0	78.9	0.0	21.1	0.0	21.1	0.0	21.1	66.7	33.3	
2633	18 14.0	14.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	42.9	57.1	
2632	27 16.0	15.0	100.0	0.0	0.0	0.0	0.0	6.3	0.0 5.6 11.8 5.9 7.1	60.0	40.0	
2633	30 18.0	18.0	94.4	0.0	5.6	0.0	5.6	0.0	5.6	58.8	41.2	
2636	18.0	17.0	88.2	0.0	11.8	0.0	11.8	5.6	11.8	60.0	40.0	
2636	59 17.0	17.0	94.1	0.0	5.9	0.0	5.9	0.0	5.9	37.5	62.5	
2638	30 14.0	14.0	92.9	0.0	7.1	0.0	7.1	0.0	7.1	38.5	61.5	
2638	33 15.0	14.0	92.9	0.0	7.1	0.0	/.⊥	6./	/.⊥	69.2	30.8	
2638	34 15.0	14.0	92.9	0.0	7.1	0.0	7.1	6.7	7.1	61.5	38.5	
2639	95 16.0	16.0	100.0	0.0	0.0	0.0	0 0	0 0	0 0	37.5	62.5	
2640	05 13.0	13.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	15.4	84.6	
2640	07 16.0	16.0	100.0	0.0	0.0	0.0	0.0	0.0 0.0 0.0 5.9	0.0	75.0	25.0	
2642	20 15.0	15.0	93.3	0.0	6.7	0.0	6.7	0.0	6.7	50.0	50.0	
2642	26 17.0	16.0	100.0	0.0	0.0	0.0	0.0	5.9	0.0	68.8	31.3	
2643	30 13.0	13.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	46.2	53.8	
2643	32 15.0	15.0	86.7	0.0	13.3	0.0			13.3	61.5	38.5	
2643	33 18.0	18.0	61.1	0.0	38.9	0.0	38.9	0.0	38.9	63.6	36.4	
2643	34 16.0	16.0	87.5	0.0	12.5	0.0	12.5	0.0	12.5	50.0	50.0	
2644	17 15.0	15.0	86.7	0.0	13.3	0.0	13.3	0.0	13.3	69.2	30.8	
2645	51 16.0	16.0	100.0	0.0	0.0	0.0	0.0	0.0	13.3	62.5	37.5	
		15.6							7.0			
S.D.	1.54	1.59	8.84	0.00	8.84	0.00	8.84	3.44	8.84	16.46	16.46	
		0.32			1.80				1.80			
N	24	24	24	24	24	24	24	24	24	24	24	

Page 292 of 394

PAGE 2

DAMS FROM GROUP 2:0 MG/KG/DAY VEH.

	CORPORA	IMPLANTATION	יייםים	IICEC	DEG		NS	PRE-	POST-			
	# LUTEA		VIABLE	DEAD	EARLY	LATE			LOSS	MALES	FEMALES	
	#					%	%	웅	% 	%	%	
26303	3 15.0	15.0	93.3	0.0	6.7 7.1 25.0	0.0	6.7	0.0	6.7 7.1 25.0 0.0 6.7	28.6	71.4	
26305	5 14.0		92.9	0.0	7.1	0.0	7.1	0.0	7.1	30.8	69.2	
26315	5 17.0	16.0	75.0	0.0	25.0	0.0	25.0	5.9	25.0	75.0	25.0	
26322	16.0	16.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	50.0	50.0	
26331	L 16.0	15.0	93.3	0.0	6.7	0.0	6.7	6.3	6.7	57.1	42.9	
26336	16.0	16.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	56.3	43.8	
26337	7 15.0	14.0	92.9	0.0	7.1	0.0	7.1	6.7	7.1	69.2	30.8	
26342	17.0	17.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	64.7	35.3	
26344	15.0	15.0	93.3	0.0	6.7	0.0	6.7	0.0	6.7	42.9	57.1	
26346	16.0	14.0	85.7	0.0	14.3	0.0	14.3	12.5	14.3 18.8 0.0 0.0 6.7	50.0	50.0	
26350	17.0	16.0	81.3	0.0	18.8	0.0	18.8	5.9	18.8	46.2	53.8	
26352	15.0	13.0	100.0	0.0	0.0	0.0	0.0	13.3	0.0	53.8	46.2	
26366	5 15.0	12.0	100.0	0.0	0.0	0.0	0.0	20.0	0.0	41.7	58.3	
26371	L 21.0	15.0	93.3	0.0	6.7	0.0	6.7	28.6	6.7	42.9	57.1	
26386	5.0	2.0	100.0	0.0	0.0	0.0	0.0	60.0	0.0	100.0	0.0	
26392	13.0	13.0	100.0	0.0	0.0	0.0		0.0		46.2	53.8	
26403	3 13.0	13.0	100.0	0.0	0.0	0.0		0.0		46.2	53.8	
26414	18.0	16.0	100.0	0.0	0.0	0.0	0.0	11.1	0.0	25.0	75.0	
26418	3 18.0	18.0	88.9	0.0	11.1	0.0	11 1	0 0	11 1	75.0	25.0	
26423	3 15.0	15.0	80.0	0.0	20.0	0.0	20.0	0.0 0.0 0.0	20.0	75.0	25.0	
26438	3 15.0	15.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	60.0	40.0	
26439		19.0	89.5	0.0	10.5	0.0	10.5	0.0	10.5	41.2	58.8	
26442	14.0	13.0	84.6	0.0	15.4	0.0	15.4	7.1	15.4	54.5	45.5	
26453	15.0	14.0	100.0	0.0	0.0	0.0	0.0	6.7	15.4 0.0	64.3	35.7	
MEAN	15.4	14.4	93.5	0.0	6.5	0.0	6.5	7.7	6.5	54.0		
S.D.	2.89	3.12	7.56	0.00	7.57	0.00	7.57	13.37	7.57	17.13	17.13	
S.E.	0.59	0.64	1.54	0.00	1.55	0.00	1.55	2.73	1.55	3.50	3.50	
N	24	24	24	24	24	24	24	24	1.55 24	24	24	

Page 293 of 394

PAGE 3

DAMS FROM GROUP 3: 5 MG/KG/DAY

C DAM #	ORPORA LUTEA	SITES	VIABLE	DEAD	EARLY	ORPTIO	NS TOTAL	PRE- IMPLANTATION LOSS	POST- IMPLANTATION LOSS	MALES	FEMALES	
	#	#	 %	%	% 	% 	%	%	%	%	%	
26316	15.0	15.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	66.7	33.3	
26319	15.0	15.0	86.7	0.0	13.3	0.0	13.3	0.0	13.3	76.9	23.1	
26320	16.0	15.0	93.3	0.0	6.7	0.0	6.7	6.3	6.7	28.6	71.4	
26323	12.0	12.0	83.3	0.0	16.7	0.0		0.0	16.7	60.0	40.0	
26328	13.0	13.0	100.0	0.0	0.0	0.0	0.0		0.0	38.5	61.5	
26329	16.0	16.0	100.0	0.0	0.0	0.0			0.0	50.0	50.0	
26341	18.0	17.0	82.4	0.0	11.8				17.6	50.0		
26343		16.0	93.8	0.0	6.3				6.3	86.7		
26351	17.0	16.0	87.5	0.0	12.5				12.5	50.0		
26354		17.0	76.5	0.0	17.6			5.6		53.8		
26358		14.0		0.0	0.0			0.0		50.0		
26365	17.0	14.0	100.0	0.0	0.0				0.0	57.1		
26370	16.0	13.0	92.3	0.0	7.7				7.7			
26378		13.0	92.3	0.0	7.7			0.0		16.7		
26385		16.0	81.3	0.0	18.8	0.0			18.8	53.8	46.2	
26388	14.0	14.0		0.0	0.0	0.0	0.0		0.0	50.0		
26397	13.0	13.0	92.3	0.0	7.7	0.0	7.7	0.0	7.7	50.0	50.0	
26402	15.0	14.0	100.0	0.0	0.0	0.0	0.0	6.7	0.0	42.9	57.1	
26409	18.0	15.0	93.3	0.0	6.7	0.0		16.7	6.7	21.4	78.6	
26419	16.0	16.0	100.0	0.0	0.0	0.0	0.0	0.0	0.0	31.3	68.8	
26421	18.0	17.0	82.4	0.0	17.6	0.0	17.6	5.6 6.3	17.6	28.6	71.4	
26424	16.0	15.0	80.0	0.0	20.0	0.0	20.0	6.3	20.0	33.3	66.7	
26435	13.0	12.0	100.0	0.0	0.0	0.0	0.0	7.7	0.0	25.0	75.0	
26437	17.0	17.0	88.2	0.0	5.9	5.9	11.8	0.0	11.8	60.0	40.0	
26454	17.0	17.0	88.2	0.0	11.8	0.0	11.8	0.0	0.0 11.8 11.8	60.0	40.0	
MEAN	15.6	14.9	91.8	0.0	7.6	0.7	8.3	4.3	8.3	48.3	51.7	
S.D.	1.83	1.62	7.68	0.00	7.01	1.96	7.69	5.83	7.69	17.34	17.34	
S.E.	0.37	0.32	1.54	0.00	1.40	0.39	1.54	1.17	1.54	3.47	3.47	
N	25	0.32	25	25	25	25	25	25	8.3 7.69 1.54 25	25	25	

Page 294 of 394

PAGE 4

DAMS FROM GROUP 4: 25 MG/KG/DAY

								PRE-	POST-			
	CORPORA		FET	USES				IMPLANTATION				
DAM	# LUTEA			DEAD	EARLY	LATE	TOTAL	LOSS	LOSS	MALES	FEMALES	
	#	#	%	%	8	%	%	웅	*	8	8	
2630		16.0		0.0				23.8	43.8	66.7		
2630	06 21.0	21.0	90.5		9.5				9.5	63.2	36.8	
263			61.1		38.9	0.0	38.9	0.0	38.9	54.5	45.5	
2632		4.0	75.0	0.0	25.0	0.0	25.0	60.0	25.0	66.7		
2632	25 15.0	15.0	60.0	0.0	40.0	0.0	40.0	0.0	40.0	44.4		
2633	32 16.0	16.0	62.5	0.0	37.5	0.0	37.5	0.0	37.5	40.0	60.0	
2633	34 17.0	9.0	33.3	0.0	66.7	0.0	66.7	47.1	66.7	33.3		
2634	45 17.0	9.0 17.0	5.9	0.0	94.1	0.0	94.1	0.0	94.1		0.0	
2635	53 13.0	13.0	38.5	0.0	61.5	0.0	61.5	0.0	61.5	20.0		
2635		19.0	63.2	0.0	36.8	0.0	30.0	13.6	30.0	41.7		
263		15.0	80.0	0.0	20.0			6.3		25.0	75.0	
263		13.0	53.8	7.7	38.5			0.0		57.1	42.9	
263		13.0	7.7	0.0	92.3			7.1		0.0	100.0	
2638		15.0	53.3	0.0	46.7	0.0	46.7	0.0	46.7	50.0	50.0	
2639		14.0	71.4	0.0	28.6	0.0	28.6	0.0 6.7 5.6 5.9 0.0 0.0 0.0 7.1	28.6	30.0		
2639		17.0	41.2	0.0	58.8	0.0	58.8	5.6	58.8	71.4		
2639		16.0	0.0	0.0	100.0	0.0	100.0	5.9	100.0		0.0	
2639		16.0	93.8	0.0	0.0	6.3	6.3	0.0	6.3	66.7		
2639		16.0	75.0	0.0	25.0	0.0	25.0	0.0	25.0	58.3	41.7	
2640		14.0	92.9	0.0	7.1	0.0	7.1	0.0	7.1	61.5	38.5	
2640		14.0	85.7	0.0	14.3	0.0	14.3	0.0	14.3	58.3	41.7	
2640		13.0	38.5	0.0	61.5	0.0	61.5	7.1	61.5	80.0	20.0	
2641		15.0	73.3	0.0	26.7	0.0	20.7	0.5	20.7	72.7	27.3	
2642			38.9	0.0					61.1			
2643	31 16.0	14.0	78.6	0.0	14.3	7.1	21.4	12.5		54.5		
MEAN	16.1	14.8	57.2	0.3	41.9	0.5	42.5	8.1	42.8	53.1	46.9	
S.D.	2.69	3.29	26.57	1.54	27.21	1.86	26.56	14.98	26.56	21.34	21.34	
S.E.	0.54	0.66	5.31	0.31	5.44	0.37	5.31	3.00	5.31	4.36	4.36	
N	25	25	25	25	25	25	25	25	25	24	24	

Page 295 of 394

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL DATA AT SCHEDULED NECROPSY [% PER LITTER]

DAMS FROM GROUP 5: 50 MG/KG/DAY

	CORPORA	IMPLANTATION	FET	JSES	RES	ORPTIO	NS	PRE- IMPLANTATION				
DAM		SITES								MALES	FEMALES	
	#	#	ે	ૄ	 왕 	% 	8	૾ૢ	ફ 	8	ૄ	
		15.0		0.0	66.7	0.0	66.7	0.0	66.7	60.0	40.0	
2632	26 15.0	15.0	6.7	0.0	93.3	0.0	93.3	0.0	93.3	0.0	100.0	
2633	33 22.0	22.0	18.2	0.0	81.8	0.0	81.8	0.0	81.8	0.0	100.0	
2633	14.0	22.0 13.0	30.8	0.0	69.2	0.0	69.2	7.1	81.8 69.2	50.0	50.0	
2634	13.0	13.0	0.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	0.0	
2635	6 15.0	14.0	28.6	0.0	71.4	0.0	71.4	6.7	71.4 88.2	25.0	75.0	
2636	17.0	17.0	11.8	0.0	82.4	5.9	88.2	0.0	88.2	50.0	50.0	
2637	76 19.0	19.0	5.3	0.0	89.5	5.3	94.7	0.0	94.7	0.0	100.0	
2637	77 12.0	12.0	33.3	0.0	66.7	0.0	66.7	0.0	66.7	25.0	75.0	
2638	8.0	2.0	0.0	0.0	100.0	0.0	100.0	75.0	100.0	0.0	0.0	
2638	39 14.0	13.0	15.4	0.0	84.6	0.0	84.6	7.1	100.0 84.6	50.0	50.0	
2639	3 20.0	19.0	42.1	0.0	57.9	0.0	57.9	5.0	57.9	62.5	37.5	
2639		14.0		0.0	100.0				100.0			
2640	06 13.0			0.0	92.3	7.7	100.0	0.0	100.0	0.0	0.0	
2641	.3 15.0	14.0	0.0	0.0	100.0	0.0	100.0	6.7	100.0	0.0	0.0	
2641	.6 15.0	15.0	73.3	0.0	20.0	6.7	26.7	0.0	26.7	72.7	27.3	
2642	19.0	17.0	29.4	0.0	70.6	0.0	70.6	10.5	70.6 100.0	100.0	0.0	
2642	16.0	16.0	0.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	0.0	
2643	13.0	13.0	0.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	0.0	
2644	15.0	15.0	26.7	0.0	73.3	0.0	73.3	0.0	73.3	50.0	50.0	
2644	16.0	16.0	0.0	0.0	100.0	0.0	100.0	0.0	100.0	0.0	0.0	
2644	18.0	16.0 17.0	23.5	0.0	64.7	11.8	76.5	5.6	100.0 76.5	25.0	75.0	
MEAN	15.4	14.7	17.2	0.0	81.1	1.7	82.8	5.9	82.8	40.7	59.3	
S.D.	3.00	3.74	18.94	0.00	19.79	3.40	18.94	15.82	18.94	29.67	29.67	
S.E.	0.64	0.80	4.04	0.00	4.22	0.72	4.04	3.37	4.04	7.93	7.93	
N	22	0.80 22	22	22	22	22	22	22	22	14	14	

PILPv4.02 11/23/2011 R:12/16/2011

PAGE 5

TABLE A15

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 1
SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL WEIGHTS [G]

	. 01.001.11			.02201	-						20112				0,										
-	FET	"	1				5															20	21	22	23
-	DAM #	MEAN	GROU																						
_	26302	4.0	3.6	3.7	4.2	3.8	4.1	4.3	4.3/	4.3	4.4	4.4	3.8	3.9	3.9	3.8									
	26304	3.3	Ε											3.3	3.3	3.4	3.2	2.9							
	26309	3.6	3.0	3.1	3.7	3.5	3.2	3.7	3.9	E /	4.1	3.9	3.7	3.9	3.8	3.7	4.0	3.4	3.1						
	26312	4.2	4.4	4.4			4.6/			4.0			4.4	4.0	4.1	4.4	4.0	4.1							
	26317	3.8	3.2	3.7			4.1			4.1/				4.2		4.0	3.8	4.0	3.8	E	E				
	26318	3.9	3.8	4.0			4.0		3.8		4.0/		4.1			3.9									
	26327	3.7	3.7	3.4	3.8		3.5			3.9		3.8	4.1/			4.2									
	26330	3.3	2.6	2.9			3.0			3.7/		3.8	3.5						3.3	2.8					
	26368	3.8	E	3.4	3.8		4.1			3.6/		3.2		3.3	3.8	E	3.8	4.0							
	26369	4.0		4.0	4.5		4.0/			3.8			4.5				4.0	4.5	E						
	26380	3.5	E	3.5	3.7		3.4			3.5			3.9	3.1	2.9										
	26383	4.3	4.2		4.4	4.4			Е		4.3		4.3	4.5	4.7										
	26384	3.4	3.4		3.3			3.2		3.2		3.6	3.5		3.2										
	26395	3.9		3.4			4.2			4.1			4.3/			3.8	4.1	4.0							
	26405	3.9	3.5	3.5			4.2							3.8	3.4										
	26407	3.4	3.0	3.5			3.4			3.4			3.5			3.5		2.8							
	26420	3.3		3.2		3.4			3.2							3.1									
	26426	3.8	2.9	3.9			4.0		3.6			3.9		3.8		3.6	3.6	3.8							
	26430	4.0		4.0	3.6		3.9		4.2/				4.1		4.0										
	26432	3.7	2.7			3.9			4.1/				3.7	3.9		3.7		-	-	0 0					
	26433	3.7		4.1	E	E			4.0			E	E	4.4	4.2		4.6		E	2.3					
	26434	4.0				4.0			3.9							4.2		4.1							
	26447	3.3			E		3.1								E	3.5		2 2							
	26451	3.7	3.4	3.9	3.9	4.2	4.1/	4.0	3.4	3.8	3.6	3.7	3.5	3.7	3.5	3.7	4.0	3.3							
	MEAN	3.7																							
	S.D.																								
	S.E.																								
		24																							

E = EARLY RESORPTION L = LATE RESORPTION D = DEAD FETUS '/' DENOTES POSITION OF CERVIX

Page 298 of 394

TABLE A15

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL WEIGHTS [G]

F	ETUS #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
DAM	# MEAN	GROU	JP 2:	: 0 MG	KG/E	AY VE	н. 																	
2630	3 3.6	3.4	3.7	3.8	E	4.0/	3.9	3.5	3.4	3.8	3.5	3.5	3.7	3.3	3.5	3.0								
2630	5 3.6	E	3.4	3.6	3.7	3.5	3.4	4.1	3.9	3.5/	3.2	3.7	3.6	3.3	3.4									
2631	5 3.6	E	E	E	3.9	3.8	4.0/	3.6	3.7	3.5	3.5	3.8	E	3.5	3.3	3.6	2.9							
2632	2 3.4	3.0	3.2	3.6	3.4	3.6	2.5	3.2	3.5	3.7/	3.5	3.5	3.6	3.7	3.4	3.2	3.2							
2633									3.7					E		3.1								
2633									4.1/					3.9	4.0	3.3	3.7							
2633									4.3						3.8									
2634									4.3					4.2	3.7	4.4	4.0	3.6						
2634	4 3.4	3.2	3.1	3.3	3.4	E	3.7	3.6	3.5/	3.5	3.1	3.3	3.4	3.4	3.4	3.4								
2634		2.7	3.2			3.2		E	3.5/					3.4										
2635		3.8			4.1				E						3.5	3.8	E							
2635									4.3/					4.2										
2636									3.5															
2637					3.0	3.8	E	3.7	3.3	3.9/	3.5	3.6	3.7	3.6	3.5	3.0								
2638			3.9/																					
2639									3.8															
2640									2.8															
2641			3.9						3.4															
2641			3.3						3.8/								3.7	3.6	3.0					
2642			3.5						3.7					3.7	E									
2643			3.9						3.9						3.6									
2643			3.8						4.3						4.0	3.9	4.0	4.0	4.3	3.4				
2644									E /															
2645	3 3.6	3.5	3.4	3.9	3.7	3.8/	3.4	3.9	3.4	3.7	3.7	3.7	3.5	3.3	3.4									
MIIA	N 2 7																							
	N 3.7 . 0.28																							
	. 0.06																							
N	24																							

E = EARLY RESORPTION L = LATE RESORPTION D = DEAD FETUS '/' DENOTES POSITION OF CERVIX

TABLE A15
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 3

ppm	US #	1	2	3	1	5	6	7	Ω	a	1.0	11	12	12	1 /	15	16	17	1 Ω	10	20	21	22	23
					- - 4 									13	14	12	10	1/	10					
	MEAN																							
	3.1							3.1	3.2	3.2	3.6	3.2	3.0	3.3	3.0	2.5								
26319	6.7-A	E	6.3	E	6.7	6.5	7.1/	6.4	7.0	7.7	7.2	6.8	6.7	6.5	6.1	6.3								
26320	3.7	3.0	2.5	3.8	3.7	4.3	3.9/	E	3.9	3.9	3.9	4.2	3.8	3.2	4.0	3.7								
26323	3.5	3.4	3.3	E	3.7	3.6	3.7	3.6/	3.4	3.5	3.6	E	3.6											
26328	3.6	3.4	3.5	3.9	3.8	3.7	3.6/	3.7	3.8	3.7	3.8	3.5	3.7	3.2										
6329	3.8	3.6	3.7	4.0	3.8	3.8	3.6/	3.7	3.6	3.8	4.3	3.6	3.9	4.0	3.8	3.3	3.5							
26341					3.0													2.9						
6343	3.7	3.5	3.5	3.6	3.7	3.7	3.5	3.9	4.0	3.4/	4.1	E	4.2	3.9	4.0	3.4	3.1							
26351	3.6	3.5	3.5	3.7	3.9	3.6	3.9	E /	E	3.6	3.8	3.8	3.6	3.8	3.7	3.5	3.1							
26354	2.8	2.5	2.4	3.2	2.9	3.2	3.1	E /	E	2.4	2.7	2.8	E	2.6	2.4	L	2.9	2.7						
26358	4.1	3.8	4.0	4.0	4.4	4.5	3.7	4.2	3.8/	4.6	4.1	4.2	3.9	4.1	3.7									
26365	4.0	3.6	3.9	4.0	4.1	4.2/	4.1	4.0	4.1	4.0	3.9	4.2	4.0	3.5	4.1									
26370	3.5	3.3	3.3	3.5	3.7	3.6	3.4	4.1	3.7	E	3.1/	3.0	3.7	3.5										
26378	3.3	2.6	3.5	3.3	3.6/	3.4	3.5	3.4	3.4	3.6	3.5	3.2	2.9	E										
26385	3.6	2.7	E	E	3.4	4.0	3.9	3.7	4.0/	3.7	3.7	4.0	E	3.3	3.9	3.5	3.2							
26388					3.8																			
26397	3.9	3.7	4.1	E	3.9	3.6	4.0/	3.9	4.0	4.3	4.2	4.1	3.6	3.1										
26402	3.7	3.6	4.1	3.4	3.7	3.7	4.0	3.7/	3.5	3.6	3.4	3.5	4.0	3.5	3.7									
26409	3.9	3.9	3.9	3.8	3.7	4.1	E	4.1	4.2	4.2	4.2/	3.7	3.9	4.2	3.8	3.3								
26419	3.7	3.5	3.5	3.6	3.6	3.5	3.6	4.0	3.6	3.9	4.3	3.7/	3.7	3.7	4.1	3.8	3.6							
26421	3.7	3.2	3.3	3.7	3.5	4.1	4.0	3.8/	E	4.0	E	3.6	4.1	3.7	3.7	3.4	3.2	E						
26424	3.5	3.1	3.5	E	E	3.4	3.9/	3.6	3.7	3.6	3.6	3.6	E	3.6	3.5	3.2								
26435	3.6	3.4	3.6	3.9	3.7/	3.3	4.0	3.8	3.7	3.8	3.7	3.3	3.2											
26437	3.9	3.8			4.1									4.3	3.9	3.9	3.3	3.7						
26454	3.6	E	3.4	3.3	3.4	3.3	3.6	3.8	3.5	3.7	3.7	3.2	E /	3.9	3.6	3.6	3.8	3.5						
MEAN	3.6																							
S.D.	0.29																							
S.E.	0.06																							
N.T.	0.4																							

Page 300 of 394

PAGE 4

FET	US #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	
DAM #	MEAN	GROU	P 4:	25	MG/K	G/DAY																			
26301	3.2	3.2	E	E	2.9	E	E	3.1	2.9	E /	3.7	E	3.8	3.2	2.8	3.0	E								
26306	3.3	E	2.6	3.1	2.9	3.9	3.3	3.4/	E	3.0	3.3	3.2	3.8	3.6	3.5	3.3	3.5	3.4	3.1	3.2	3.2	2.6			
26313	3.3	3.3	3.2	E	3.2	3.5	E /	E	E	3.4	E	3.1	3.6	3.8	3.3	3.0	3.2	E	E						
26324	3.6	3.4	3.7	E /	3.6																				
26325	3.3	E	3.1	3.1	E	3.2	3.0	E	E /	E		3.3		3.8	2.9	E									
26332	3.1	E	3.3	3.2	E	2.9	3.0	3.4/		E	3.1	3.1	3.5	E	E	3.1	2.5								
26334	3.8	4.1	3.7	E	E /	E	3.6	Ε	E	E															
26345	4.1	Ε	Ε	E	E	Ε	E	E	E /	E	Ε	E	Ε	E	E	E	4.1	Ε							
26353	3.2	2.7	E	E	Е	3.4	Е	E /	E	3.6	Е	E	3.3	3.2					_	_					
26357	3.3	E	E	Е	3.6	3.7	3.1	2.7/	E	E	2.8	3.3	3.7	3.4	3.8		3.6	2.7	Ε	Ε					
26372	3.1	E	3.1	2.9	3.5	3.1	3.1	3.6	E/	3.2	2.6	3.1	3.5	3.2	E	2.3									
26373 26379	3.1 2.8	2.7 E	D	E E	3.6 E	3.0 E	3.3	E/	Е	Е	E 2.8	2.9	3.1 E	2.9 E											
26379	3.4	3.1	E E	E	3.4	3.5	E / 3.5	E E	E E	E E /	2.0 E	E E	3.0	3.3	3.6	2 /									
26390	2.7	E	E	2.8	3.0	2.6	2.3/		2.8	3.0	E	2.8	2.5	2.8	2.8	J. I									
26391	3.1	E	E	2.8	2.7	2.0 E	3.0	E	2.0 E	E	3.3	E /	E.5	2.0 E	3.1	Е	3.8	3.1							
26396	0.0	E	E	Z.0	E,	E	E /	E	E	E	E E	E	E	E	E	E	E .	J.1							
26398	3.3	2.9	3.6	3.5	3.2	2.9	2.9	3.3	3.1	3.4/		3.7	3.7	3.3	3.5	L	3.1								
26399	3.1	E	E	3.0	E	3.1	3.2/		3.3	3.9	3.4	3.6	2.6	3.0	2.9	2.7	E								
26400	3.5	E	3.7	3.6/		2.9	3.4	3.7	3.6	3.9	3.3	3.7	3.4	3.2	3.4										
26404	3.1	E	2.1	3.1	E	3.2	3.3	3.1	3.1/	3.3	3.2	3.4	3.2	3.5	3.1										
26408	3.4	2.9	E	3.8	E /	E	E	E	E	3.5	E	3.5	3.2	E											
26415	3.4	3.1	E	3.4	3.3	3.2/	E	E	3.5	E	3.6	2.9	3.6	3.9	3.4	3.6									
26425	3.2	E	E	3.1	3.7	E	E	E	E	E /	3.1	3.2	E	E	E	2.7	E	3.6	3.3						
26431	2.5	2.3	2.8	2.8	E /	2.7	2.7	2.1	2.2	E	2.9	L	2.4	2.3	2.1										
MEAN	3.2																								
S.D.	0.33																								
S.E.	0.07																								
N.T.	2.4																								

E = EARLY RESORPTION L = LATE RESORPTION D = DEAD FETUS '/' DENOTES POSITION OF CERVIX

TABLE A15 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 5

INDIVIDUAL FETAL WEIGHTS [G]

FET	US #	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
DAM #	MEAN	GROU	P 5:	50	MG/K	G/DAY																		
26311 26326 26333 26339 26347	3.4 1.8 2.4 3.0 0.0	E E E E	E E E E	E E E E 2.7	E E E E	E E E E	E 1.8 E E E	3.6 E / E E /	3.7 E E E E	E / E E 3.0 E	E E E E	3.5 E 3.0 3.4 E	3.1 E E / 2.8 E	E E E E	3.0 E E	E E E	E	E	E	2.4	E	2.1	2.0	
26356 26360 26376 26377 26382	2.5 2.9 3.1 2.8 0.0	E E E 3.0 E	E E E E /	E E E	E E E	E E E 2.4	2.3 E E 2.8	E / E E 3.0/	E E / E	E E E /	2.9 E E E	E E E	2.5 2.9 3.1 E	2.4 E E	E 2.8 E	E L	E E	L E	E	E				
26389 26393 26394 26406	1.5 3.3 0.0 0.0	E 3.1 E E	E E E	E E E	1.4/ E E E	E E E	E 2.9 E / E	E 3.4 E E	E E E /	E 3.5 E E	1.6 E / E E	E E L	E E E	E E E	E	3.3	E	3.5	3.3	E				
26413 26416 26427 26428 26436	0.0 2.8 3.0 0.0	E E E	E 3.0 E E E	E 3.1 E E E	E E 3.2 E E	E 2.6 3.4 E E	E 3.0 E E / E /	E / 2.5/ E / E	E 3.1 E E E	E E E E	E 2.7 3.2 E E	E 3.1 E E E	E 2.5 E E	E 3.4 E E E	E L 2.7 E	2.3 2.4 E	E E	E						
26443 26444 26448	2.3 0.0 2.3	2.2 E E	E E E	2.4 E E	E E E	E / E E	E E L	E E E	2.2 E / E /	E E E	E E E	E E 2.1	2.2 E 2.2	E E 2.5	E E E	E E E	E 2.5	L						
MEAN S.D. S.E. N	2.7 0.55 0.15 14																							

E = EARLY RESORPTION L = LATE RESORPTION D = DEAD FETUS '/' DENOTES POSITION OF CERVIX

PFWTv4.15 11/23/2011 R:12/16/2011

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

DAMS FROM	GROUP 1:0 MG/KG	/DAY SHAM FETUS #	GRAD:
26302		1 2 3 4 5 6 7 8 9 10 11 12 13 14 A A A A A A A A A A A A A A SEX: M F M F M M M M M F M M CEPHALIC: 1,3,5,7,9,11,13	
	VISCERAL	10 V RENAL PAPILLA(E) NOT DEVELOPED AND/OR DISTENDED URETER(S) URETER, LEFT NO REMARKABLE OBSERVATIONS	1
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,9,11,12,13,14 1,2,3,4,5,6,7,8,9,10,11,12,13,14	
26304		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 E A A A A A A A A A A A A A A SEX: - F F F M M M M F M F F M M M CEPHALIC: 2,4,6,8,10,12,14,16	
	EXTERNAL	1 EARLY RESORPTION	_
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	9 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

PAGE 1

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 2

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	OM GROUP 1:0 MG/KG/DAY	SHAM FETUS #		GRADE
26304	(CONTINUED)		#5	
	SKELETAL	12	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	13	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	15	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	16	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	EXTERNAL VISCERAL SKELETAL	2,3,4,5	ABLE OBSERVATIONS ,6,7,8,9,10,11,12,13,14,15,16 ,6,7,8,9,10,11,12,13,14,15,16 ,14	
26309	C	1 2 3 A A A SEX: F F F EPHALIC: 2,4,6,9	A A A A E / A A A A A A A A A A F M F F - F M F F F F M F F	
	SKELETAL SKELETAL SKELETAL SKELETAL EXTERNAL	3 5 6 7 8	V CERVICAL CENTRUM #1 OSSIFIED EARLY RESORPTION	P P P P
	SKELETAL SKELETAL	11 13	V CERVICAL CENTRUM #1 OSSIFIED V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) LEFT	P P P
	SKELETAL	14	V 14TH RUDIMENTARY RIB(S) RIGHT	P

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 3

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUD	P 1:0 MG/KG,	/DAY SHAM FETUS #	GRADE
26309 (CONTI			
	SKELETAL	16 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17	
	VISCERAL	1,2,3,4,5,6,7,9,10,11,12,13,14,15,16,17	
	SKELETAL	1,2,4,9,10,12,15,17	
26312		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		$A \ $	
		SEX: M M F F M M - F M F F F F M F F	
		CEPHALIC: 1,3,5,8,10,12,14,16	
	SKELETAL	2 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	5 V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	D
	EXTERNAL	V CERVICAL CENTRUM #1 OSSIFIED 7 EARLY RESORPTION	P
	SKELETAL	9 V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,8,9,10,11,12,13,14,15,16	
	VISCERAL SKELETAL	1,2,3,4,5,6,8,9,10,11,12,13,14,15,16 1,3,4,6,8,10,11,12,13,14,15,16	
	SKEDETAD	1,3,4,0,0,10,11,12,13,14,15,10	
26317		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
		A A A A A A A E E A A A A A A E E	
		SEX: M F M M M M F F M M F M M M F	
		CEPHALIC: 2,4,6,8,12,14,16	
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	

TABLE A16

SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM	M GROUP 1:0 MG/KG/DAY	Y SHAM FETUS #	GRAD:
26317	(CONTINUED)		
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
	SKELETAL	16 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	18 EARLY RESORPTION	
	EXTERNAL	19 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,11,12,13,14,15,16,17	
	VISCERAL	1,2,3,4,5,6,7,8,11,12,13,14,15,16,17	
	SKELETAL	1,3,4,6,7,8,11,12,13,14,15,17	
26318		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		A A A A A A A A A A A A	
		SEX: F F M M M M F F M F F M F F	
	(CEPHALIC: 1,3,5,7,9,11,13	
	SKELETAL	7 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1
	G1177 777 7	#3 THROUGH #5	_
	SKELETAL	8 V HYOID UNOSSIFIED	P
	SKELETAL	V CERVICAL CENTRUM #1 OSSIFIED	P P
	SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED 12 V CERVICAL CENTRUM #1 OSSIFIED	r
	SKELETAL	14 V CERVICAL CENTROM #1 OSSIFIED	P
	SKELETAL	NO REMARKABLE OBSERVATIONS	г
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14	
	SKELETAL	1,2,3,4,5,6,10,11,13	
	211221112		
26327		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		A A A A A A A A A A A A	
		SEX: M F M M F F M M F F M M M M F	
		CEPHALIC: 2,4,6,8,10,12,14	

PAGE 4

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

SPONSOR: AMERICAN PETROLEUM

DAMS F	ROM GROUP 1:0 MG/KG/DAY	Y SHAM FETUS #	GRADE
26327	(CONTINUED)		
	SKELETAL	1 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	12 V 14TH RUDIMENTARY RIB(S) RIGHT	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15	
	SKELETAL	3,4,6,7,8,10,11,13,14,15	
26330		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	(SEX: F F M M M F M M - M M F M M F M F F CEPHALIC: 1,3,5,7,10,12,14,16,18	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5 AND #6	_
		V STERNEBRA(E) #1,#2,#3 AND/OR #4 UNOSSIFIED #4	P
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
	ATT	#5	_
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
	010001110	#5	-
	SKELETAL	7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	9 EARLY RESORPTION	

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 5

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

26330	(CONTINUED)		
20330	SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	16 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	17 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		V 14TH RUDIMENTARY RIB(S) BILATERAL	P
	SKELETAL	18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18	
	VISCERAL SKELETAL	1,2,3,4,5,6,7,8,10,11,12,13,14,15,16,17,18 3,6,8,13,14,15	
26368		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
		E A A A A A A A A A A E A A A	
		SEX: - F M M M M F M F M F F - F M M	
		CEPHALIC: 2,4,6,8,10,12,15,17	
	EXTERNAL	1 EARLY RESORPTION	
	SKELETAL	2 V 14TH RUDIMENTARY RIB(S) LEFT	P
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	4 V 14TH RUDIMENTARY RIB(S) LEFT	Р

PAGE 6

SKELETAL

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

______ DAMS FROM GROUP 1:0 MG/KG/DAY SHAM FETUS # 26368 (CONTINUED) SKELETAL 5 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 7 V CERVICAL CENTRUM #1 OSSIFIED Р V 14TH RUDIMENTARY RIB(S) Ρ BILATERAL 9 V CERVICAL CENTRUM #1 OSSIFIED 13 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL Р SKELETAL Ρ 14 EARLY RESORPTION
15 V CERVICAL CENTRUM #1 OSSIFIED EXTERNAL SKELETAL Р SKELETAL 16 V CERVICAL CENTRUM #1 OSSIFIED NO REMARKABLE OBSERVATIONS 2,3,4,5,6,7,8,9,10,11,12,13,15,16,17 EXTERNAL VISCERAL 2,3,4,5,6,7,8,9,10,11,12,13,15,16,17 SKELETAL 6,8,10,11,12,17 26369 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A A A A A A A A A A A A A A E SEX: F M F M F F F F F M M F M F F M -CEPHALIC: 2,4,6,8,10,12,14,16 SKELETAL 1 V 14TH RUDIMENTARY RIB(S) Ρ LEFT SKELETAL 2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED Ρ SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED P V 14TH RUDIMENTARY RIB(S) P RIGHT SKELETAL 8 V 14TH RUDIMENTARY RIB(S) LEFT

14 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED

PAGE 7

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 1:0 MG/KG/DA	Y SHAM FETUS #	GRADE
26369	(CONTINUED)		
	SKELETAL	15 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	16 V 14TH RUDIMENTARY RIB(S) LEFT	P
	EXTERNAL	17 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	SKELETAL	3,4,5,7,9,10,11,12,13	
26380		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		SEX: - F F M F M M F M F F F F M CEPHALIC: 2,4,6,8,10,12,14	
	EXTERNAL	1 EARLY RESORPTION	
	SKELETAL	2 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
	SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	14 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	2,3,4,5,6,7,8,9,10,11,12,13,14	
	VISCERAL	2,3,4,5,6,7,8,9,10,11,12,13,14	
	SKELETAL	3,4,5,6,7,9,11,12,13	
26383		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		A A A A A E A/ A A A A A	
		SEX: M M F M M F - M F M F M M M	
		CEPHALIC: 2,4,6,9,11,13	

PAGE 8

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS F	ROM GROUP 1:0 MG/KG/DAY SHAM	FETUS #	GRADE
26383	(CONTINUED)		
	SKELETAL	1 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	2 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	4 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	6 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	7 EARLY RESORPTION	
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	13 V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,8,9,10,11,12,13,14	
	VISCERAL	1,2,3,4,5,6,8,9,10,11,12,13,14	
	SKELETAL	3,5,8,9,10,14	
26384		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		A A A E/ A A A A A A A A	
		K: M M F M - F M F M M M F F M	
	CEPHALI	C: 1,3,6,8,10,12,14	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	2 V CERVICAL CENTRUM #1 OSSIFIED	P
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	5 EARLY RESORPTION	
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 9

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED
SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 10

DAMS F	ROM GROUP 1:0 MG/KG/DAY SHA	FETUS #	GRADE	E
26384	(CONTINUED)			
	SKELETAL	#5 8 V STERNEBRA(E) #5 AND/ #5	OR #6 UNOSSIFIED P	
	SKELETAL	9	OR #6 UNOSSIFIED P	
	SKELETAL	11	OR #6 UNOSSIFIED P	
	SKELETAL	12 V STERNEBRA(E) #5 AND/ #5	OR #6 UNOSSIFIED P	
	SKELETAL	13 V STERNEBRA(E) #5 AND/ #5	OR #6 UNOSSIFIED P	
	SKELETAL	14 V STERNEBRA(E) #5 AND/ #5	OR #6 UNOSSIFIED P	
	EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,6,7,8,9,10,11,12,13,14 1,2,3,4,6,7,8,9,10,11,12,13,14 7,10		
26395	СЕРНА	1 2 3 4 5 6 7 8 9 10 11 A A A A A A A A A A A A A K: M F M F F F F M F M C: 2,4,6,8,10,12,14,16	/ A A A A A	
	SKELETAL SKELETAL	5 V CERVICAL CENTRUM #1 6 V 14TH RUDIMENTARY RIB LEFT		
	SKELETAL		NED(SLIGHT OR MODERATE) 2	
	SKELETAL	8 V 14TH RUDIMENTARY RIB LEFT	(S) P	

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 11 PROJECT NO.:WIL-402016 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 1:0 MG/KG/	DAI SHAM FEIUS #	GRADE
26395	(CONTINUED)	NO REMARKABLE OBSERVATIONS	
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,9,10,11,12,13,14,15,16	
26405		1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A SEX: F F F F F M M F F F F F	
		CEPHALIC: 2,4,6,8,10,12,13	
	SKELETAL	7 V CERVICAL CENTRUM #1 OSSIFIED NO REMARKABLE OBSERVATIONS	Р
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,7,8,9,10,11,12,13 1,2,3,4,5,6,8,9,10,11,12,13	
26407		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A A A A A A A A A A A A A A A	
		SEX: M M M F M M F F M M M M F M M CEPHALIC: 2,4,6,8,10,12,14,16	
	VISCERAL	1 M SITUS INVERSUS TRACHEA, ESOPHAGUS, HEART, GREAT AND MAJOR VESSELS, LUNGS, LIVER, STOMACH, PANCREAS, SPLEEN, KIDNEYS, ADRENALS AND INTESTINE LATERALLY TRANSPOSED	Р
	SKELETAL	5 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3 AND #4	1
	SKELETAL	6 V 14TH RUDIMENTARY RIB(S)	P
	SKELETAL	RIGHT 7 V 14TH RUDIMENTARY RIB(S)	Р

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 12

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

AMS FROM	GROUP 1:0 MG/KG	/DAY SHAM FETUS #	GRADI
6407 (C	ONTINUED)		
		RIGHT	
	SKELETAL	10 V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	
	SKELETAL	11 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	
	SKELETAL	13 V 14TH RUDIMENTARY RIB(S)	P
	G1177 777 7	BILATERAL	
	SKELETAL	16 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES CERVICAL #4 THROUGH #7, BILATERAL	1
		M STERNEBRA(E) MALALIGNED (SEVERE)	P
		#2 AND #3; RIGHT COSTAL CARTILAGES #1 AND #2 FUSED AN	
		ASSOCIATE WITH STERNUM IN NORMAL #1 POSITION; NO RIG	
		COSTAL CARTILAGE ASSOCIATES IN NORMAL #2 POSITION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	VISCERAL	2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	SKELETAL	1,2,3,4,8,9,12,14,15	
6420		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
		SEX: F F F M - M F M M F M M M F F	
		CEPHALIC: 1,3,6,8,12,14	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	-
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 13 PROJECT NO.:WIL-402016 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM G	ROUP 1:0 MG/KG/DAY	SHAM FETUS #	GRADE
26420 (CO	NTINUED)		
		#5	
	EXTERNAL	5 EARLY RESORPTION	
	SKELETAL	6 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	8 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,6,7,8,9,10,11,12,13,14,15	
	VISCERAL	1,2,3,4,6,7,8,9,10,11,12,13,14,15	
	SKELETAL	9,10,11,13,14,15	
26426		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
	~	SEX: M M M F F F F F M M M M M M M M	
	C.	EPHALIC: 1,3,5,7,9,11,13,15	
	SKELETAL	4 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
	VISCERAL	7 RENAL PAPILLA(E) NOT FULLY DEVELOPED (WOO AND HOAR GRADE 1 RIGHT) P
	SKELETAL	14 V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	VISCERAL	1,2,3,4,5,6,8,9,10,11,12,13,14,15,16	
	SKELETAL	1,2,3,6,7,8,9,10,11,12,13,15,16	
26430		1 2 3 4 5 6 7 8 9 10 11 12 13	
		$ \begin{smallmatrix} A & A & A & A & A & A & A & A & A & A$	
		SEX: M M F F F F F F M M M M	
	C	EPHALIC: 1,3,5,7,9,11,13	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 14

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 1:0 MG/KG/	DAY SHAM FETUS #	GRADE
26430	(CONTINUED)		
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,6,7,8,9,10,11,12,13	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
	SKELETAL	1,2,3,4,5,6,7,8,9,11,13	
0.5400			
26432		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A E A A A A/A E A A A A A	
		SEX: F - F M F M F M - M M M F M M	
		CEPHALIC: 1,4,6,8,11,13,15	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	-
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	NO REMARKABLE OBSERVATIONS 1,3,4,5,6,7,8,10,11,12,13,14,15	
	VISCERAL	1,3,4,5,6,7,8,10,11,12,13,14,15	
	SKELETAL	3,4,5,6,7,8,10,11,12,13,14,15	
26433		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
20433		A A E E A A A A E E E A A A A E E A	
		SEX: M F F M F F M M M M M	
		CEPHALIC: 2,6,8,13,15	
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	6 M LOCALIZED FETAL EDEMA NECK AND THORAX	

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

______ DAMS FROM GROUP 1:0 MG/KG/DAY SHAM FETUS # 26433 (CONTINUED) VISCERAL 6 CONFIRMATION OF LOCALIZED FETAL EDEMA SKELETAL V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES 1 CERVICAL #4 THROUGH #7, BILATERAL V PUBIS UNOSSIFIED BILATERAL V STERNEBRA(E) #1, #2, #3 AND/OR #4 UNOSSIFIED #2 THROUGH #4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6 M STERNOSCHISIS STERNAL BANDS #1 AND #2 NOT

V CERVICAL CENTRUM #1 OSSIFIED

V CERVICAL CENTRUM #1 OSSIFIED

EARLY RESORPTION

EARLY RESORPTION

EARLY RESORPTION

CERVICAL CENTRUM #1 OSSIFIED

V CERVICAL CENTRUM #1 OSSIFIED

V CERVICAL CENTRUM #1 OSSIFIED

V PUBIS UNOSSIFIED STERNAL BANDS #1 AND #2 NOT JOINED SKELETAL Р SKELETAL EXTERNAL EXTERNAL EXTERNAL SKELETAL SKELETAL SKELETAL Ρ Ρ BILATERAL V 14TH RUDIMENTARY RIB(S) BILATERAL M STERNOSCHISIS Р STERNAL BANDS #5 AND #6 NOT JOINED 16 EARLY RESORPTION EXTERNAL 17 EARLY RESORPTION 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED EXTERNAL SKELETAL

> V REDUCED OSSIFICATION OF THE SKULL ZYGOMATIC ARCH, LEFT

PAGE 15

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS ______ DAMS FROM GROUP 1:0 MG/KG/DAY SHAM FETUS # 26433 (CONTINUED) SKELETAL 18 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES CERVICAL #4 THROUGH #7, BILATERAL V 14TH RUDIMENTARY RIB(S) Ρ V PUBIS UNOSSIFIED Ρ BILATERAL NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,5,7,8,12,13,14,15,18 VISCERAL 1,2,5,7,8,12,13,14,15,18 SKELETAL 1,2,5,15 26434 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 E E A A A A A A A A A A A A A SEX: - - M M M F M M F F F M F M F F CEPHALIC: 3,5,7,9,11,13,15 EXTERNAL EARLY RESORPTION EXTERNAL EARLY RESORPTION SKELETAL 4 V CERVICAL CENTRUM #1 OSSIFIED 5 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL Ρ V 14TH RUDIMENTARY RIB(S) Ρ LEFT 6 V CERVICAL CENTRUM #1 OSSIFIED Р SKELETAL V 14TH RUDIMENTARY RIB(S) Р BILATERAL 7 V CERVICAL CENTRUM #1 OSSIFIED 8 V CERVICAL CENTRUM #1 OSSIFIED Р SKELETAL SKELETAL Ρ SKELETAL 10 V CERVICAL CENTRUM #1 OSSIFIED Ρ V 14TH RUDIMENTARY RIB(S) Ρ

PAGE 16

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

BILATERAL

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 17

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM G	ROUP I:U MG/KG/	/DAY SHAM	GRADE
26434 (CO	NTINUED)		
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	13 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	15 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S) BILATERAL	P
	SKELETAL	16 V CERVICAL CENTRUM #1 OSSIFIED	Р
		V 14TH RUDIMENTARY RIB(S)	P
		LEFT	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	VISCERAL	3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	SKELETAL	3,9,14	
26447		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		A A E A A A A A A A A A A A A	
		SEX: M M - M F F M M F F M M - M M	
		CEPHALIC: 2,5,7,9,11,14	
	SKELETAL	1 V CERVICAL CENTRUM #1 OSSIFIED	P
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
	EXTERNAL	3 EARLY RESORPTION	
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	7 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	8 V 14TH RUDIMENTARY RIB(S) LEFT	P
		V CERVICAL CENTRUM #1 OSSIFIED	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DI ONDOI	C.AMERICAN FEIROLEON	INDIVIDUAL FEIAL EXTERNAL, VISCERAL AND SREEFAL FINDINGS	
DAMS FR	ROM GROUP 1:0 MG/KG/DAY SHA	AM FETUS #	GRADE
26447	(CONTINUED)		
	SKELETAL	9 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
	SKELETAL	10 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3	2
	SKELETAL	12 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
	EXTERNAL	13 EARLY RESORPTION NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,4,5,6,7,8,9,10,11,12,14,15	
	VISCERAL	1,2,4,5,6,7,8,9,10,11,12,14,15	
	SKELETAL	2,4,5,11,14,15	
26451		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
	CEDUA	SEX: M M M M M M F M F F F F M M M	
	CEPHA	ALIC: 2,4,6,8,10,12,14,16	
	SKELETAL	2 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	4 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	8 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
	SKELETAL	9 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 18

SKELETAL

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 19

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS ______ DAMS FROM GROUP 1:0 MG/KG/DAY SHAM FETUS # GRADE 26451 (CONTINUED) 10 V CERVICAL CENTRUM #1 OSSIFIED 11 V CERVICAL CENTRUM #1 OSSIFIED 12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED SKELETAL SKELETAL SKELETAL Р Ρ SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED SKELETAL 14 V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 15 V CERVICAL CENTRUM #1 OSSIFIED NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION
OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT
SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

1,6,16

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 2:0 MG/K	G/DAY VEH. FETUS	# 	GRADE
26303	A A	3 4 5 6 7 8 9 10 11 12 13 14 15 A E A/A A A A A A A A A A F - M M F F M F F F M F F 7,9,11,13,15	
SKELETAL	:	3 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #4 AND #5	1
EXTERNAL		#4 AND #5 4 EARLY RESORPTION	
SKELETAL		5 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	P
		#3 AND #4, MODERATE; #5, SLIGHT	
		V REDUCED OSSIFICATION OF THE 13TH RIB(S) RIGHT	1
SKELETAL		6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
SKELETAL		8 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		V CERVICAL CENTRUM #1 OSSIFIED	P
SKELETAL	1	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
SKELETAL	1:		1
SKELETAL	1		1
SKELETAL	1		P
SKELETAL	1	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р

PAGE 20

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 21

DAMS FROM	M GROUP 2:0 MG/KG/I	PAY VEH. FETUS #	GRADE
26303 ((CONTINUED)		
	EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,5,6,7,8,9,10,11,12,13,14,15 1,2,3,5,6,7,8,9,10,11,12,13,14,15 1,2,7,9,10	
26305		1 2 3 4 5 6 7 8 9 10 11 12 13 14 E A A A A A A A A A A A A A A A A A SEX: - F M F F F M F M F M F F F CEPHALIC: 3,5,7,9,11,13	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 2,3,4,5,6,7,8,9,10,11,12,13,14 2,3,4,5,6,7,8,9,10,11,12,13,14 2,3,4,5,6,7,8,9,10,11,12,13,14	
26315		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 E E E A A A/A A A A E A A A A SEX: M M M M M F M M - F F M M CEPHALIC: 5,7,9,11,14,16	
	EXTERNAL EXTERNAL EXTERNAL	1 EARLY RESORPTION 2 EARLY RESORPTION 3 EARLY RESORPTION	
	VISCERAL	6 V HEMORRHAGIC RING AROUND THE IRIS RIGHT	Р
	SKELETAL	7 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
	SKELETAL	8 V 14TH RUDIMENTARY RIB(S) BILATERAL	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FF	ROM GROUP 2:0 MG/KG/DAY VE	H. FETUS #	GRADE
26315	(CONTINUED)		
	SKELETAL	9 V 14TH RUDIMENTARY RIB(S) LEFT	P
	SKELETAL	11 V 7TH CERVICAL RIB(S) PINPOINT, RIGHT	Р
	EXTERNAL	12 EARLY RESORPTION	
	SKELETAL	16 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	4,5,6,7,8,9,10,11,13,14,15,16	
	VISCERAL SKELETAL	4,5,7,8,9,10,11,13,14,15,16 4,5,6,10,13,14,15	
	SKELETAL	4,5,6,10,13,14,15	
26322		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		SEX: M F M F F F M F M F M M M F M F	
	CEPH	ALIC: 1,3,5,7,9,11,13,15	
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
		#5 AND #6 NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	SKELETAL	1,2,3,4,5,7,8,9,10,11,12,13,14,15,16	
26331		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	
		SEX: F M M M F M M F M M F - F F	
	CEPH	ALIC: 2,4,6,8,10,12,15	

PAGE 22

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 23

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FF	ROM GROUP 2:0 MG/KG/DAY	VEH. FETUS #	GRADE
26331	(CONTINUED)		
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	EXTERNAL	13 EARLY RESORPTION	
	SKELETAL	15 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,14,15	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,14,15	
	SKELETAL	3,4,6,7,8,10,11,14	
26336		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		A A A A A A A A A A A A A A A A A A A	
		SEX: M F M M F M M F F F M F M	
	C	PHALIC: 1,3,5,7,9,11,13,15	
	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	14 V 14TH RUDIMENTARY RIB(S) LEFT	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 24

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FF	ROM GROUP 2:0 MG/KG/	DAY VEH. FETUS #	GRADE
26336	(CONTINUED) EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,6,7,8,11,12,13,15,16	
26337		1 2 3 4 5 6 7 8 9 10 11 12 13 14 E A A A A A A A A A A A A SEX: - M M F M M F M M M F F M CEPHALIC: 3,5,7,9,11,13	
	EXTERNAL SKELETAL EXTERNAL VISCERAL SKELETAL	1 EARLY RESORPTION 12 V CERVICAL CENTRUM #1 OSSIFIED NO REMARKABLE OBSERVATIONS 2,3,4,5,6,7,8,9,10,11,12,13,14 2,3,4,5,6,7,8,9,10,11,12,13,14 2,3,4,5,6,7,8,9,10,11,13,14	Р
26342		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A A A A A A A A A A A A A A A A SEX: M M F M M M M F M F M F M F M F CEPHALIC: 1,3,5,7,9,11,13,15,17	
	SKELETAL	4 V 14TH RUDIMENTARY RIB(S)	Р
	SKELETAL	6 V REDUCED OSSIFICATION OF THE SKULL	1
	SKELETAL	SUPRAOCCIPITAL 7 V 14TH RUDIMENTARY RIB(S)	Р
	SKELETAL	LEFT 9 V 14TH RUDIMENTARY RIB(S) BILATERAL	P

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 25

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM	M GROUP 2:0 MG/KG/D	AY VEH. FETUS #	GRADE
26342	(CONTINUED)		
	SKELETAL	13 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
	SKELETAL	#5 15 V 14TH RUDIMENTARY RIB(S)	Р
		RIGHT	-
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17	
	SKELETAL	1,2,3,5,8,10,11,12,16,17	
26344		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		$ \hbox{A A A E A A A A A A A A A } $	
		SEX: M F F F - M M F M F F F M	
		CEPHALIC: 1,3,6,8,10,12,14	
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	5 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,6,7,8,9,10,11,12,13,14,15	
	VISCERAL	1,2,3,4,6,7,8,9,10,11,12,13,14,15	
	SKELETAL	1,2,4,6,7,8,9,10,11,12,13,14,15	
26346		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		A A A A A E A/ E A A A A	
		SEX: F M M M F F - M - M F M F F	
		CEPHALIC: 1,3,5,8,11,13	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 26

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

26346	(CONTINUED)		
26346	(CONTINUED) SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	7 EARLY RESORPTION	
	SKELETAL	8 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	EXTERNAL	9 EARLY RESORPTION	
	SKELETAL	14 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,8,10,11,12,13,14	
	VISCERAL SKELETAL	1,2,3,4,5,6,8,10,11,12,13,14 3,4,6,10,11,12,13	
26350		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		SEX: F M M F F M M F F M M F F - CEPHALIC: 1,3,5,9,11,13,15	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION 10 V CERVICAL CENTRUM #1 OSSIFIED	To the state of th
	SKELETAL EXTERNAL	10 V CERVICAL CENTRUM #1 OSSIFIED 16 EARLY RESORPTION	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,9,10,11,12,13,14,15	
	VISCERAL	1,2,3,4,5,6,9,10,11,12,13,14,15	
	SKELETAL	1,2,3,4,5,6,9,11,12,13,14,15	
26352		1 2 3 4 5 6 7 8 9 10 11 12 13	
		A A A A A A A A A A A A	
		SEX: M F F F M M M M M F M F F CEPHALIC: 1,3,5,7,9,11,13	

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 27

DAMS FROM GROUP 2:0 MG/KG/DAY VEH	. FETUS #	GRADE
26352 (CONTINUED)		
SKELETAL	2 V CERVICAL CENTRUM #1 OSSIFIED	P
SKELETAL	4 V 14TH RUDIMENTARY RIB(S) RIGHT	Р
SKELETAL	5 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
SKELETAL	6 V CERVICAL CENTRUM #1 OSSIFIED	P
	V 14TH RUDIMENTARY RIB(S) BILATERAL	P
SKELETAL	9 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	P
SKELETAL	11 V 14TH RUDIMENTARY RIB(S)	P
	LEFT	
SKELETAL	12 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
SKELETAL	1,3,7,8,13	
26366	1 2 3 4 5 6 7 8 9 10 11 12	
	A A	
	SEX: F F F M M F M F F M M F	
СЕРНА	LIC: 1,3,5,7,9,11	
SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 28

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FF	ROM GROUP 2:0 MG/KG/DAY V	EH. FETUS #	GRADE
26366	(CONTINUED)		
	SKELETAL	#5 5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	8 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12	
	VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12 4,9,12	
26371		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		f A $f A$	
	CEF	SEX: M M F M M - M F F F F F F M F HALIC: 2,4,7,9,11,13,15	
	SKELETAL	1 V BENT RIB(S)	1
	SKELETAL	#5 THROUGH #11, RIGHT; #8 THROUGH #10, LEFT 2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	4 V PUBIS UNOSSIFIED BILATERAL	Р

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

26371	(CONTINUED)			
20371	SKELETAL	4	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	Р
	EXTERNAL	6	EARLY RESORPTION	
	SKELETAL	7	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #6	Р
			V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	8	V 14TH RUDIMENTARY RIB(S) RIGHT	Р
	SKELETAL	9	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 V CERVICAL CENTRUM #1 OSSIFIED	P P
	SKELETAL	10	V CERVICAL CENTROM #1 OSSIFIED V CERVICAL CENTRUM #1 OSSIFIED	P P
	SKELETAL	11	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	12	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 V CERVICAL CENTRUM #1 OSSIFIED	P P
	SKELETAL	14	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #6	P
	SKELETAL	15	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	Р
		NO REMARK	ABLE OBSERVATIONS	
	EXTERNAL VISCERAL SKELETAL		5,7,8,9,10,11,12,13,14,15 5,7,8,9,10,11,12,13,14,15	
26386		1 2 A A/		
		SEX: M M LIC: 1		

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 29

TABLE A16 PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 30 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

$A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A$	DAMS FROM GROUP 2:0 MG/KG	/DAY VEH. FETUS #	GRADE
EXTERNAL VISCERAL 1,2 VISCERAL 1,2 26392 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A A A A	26386 (CONTINUED)		
VISCERAL SKELETAL 1,2 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A SEX: M F F F M F F F M M M F M CEPHALIC: 1,3,5,7,9,11,13 SKELETAL			
SKELETAL 1,2 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A A A A			
26392 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A A A A			
SEX: M F F F M F F F M M M F M CEPHALIC: 1,3,5,7,9,11,13 SKELETAL 2 V 14TH RUDIMENTARY RIB(S) LEFT SKELETAL 3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 SKELETAL 4 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 9 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED ***STERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 L2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403	SKELETAL	1,2	
SEX: M F F F M M F F M M M F M CEPHALIC: 1,3,5,7,9,11,13 SKELETAL SKELETAL	26392	1 2 3 4 5 6 7 8 9 10 11 12 13	
CEPHALIC: 1,3,5,7,9,11,13 SKELETAL 2		A A A A A/A A A A A A	
SKELETAL 2			
LEFT SKELETAL 3		CEPHALIC: 1,3,5,7,9,11,13	
SKELETAL 3 V STERNBERA(E) #5 AND/OR #6 UNOSSIFIED #5 SKELETAL 4 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 5 V STERNBERA(E) #5 AND/OR #6 UNOSSIFIED #5 SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNBERA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A	SKELETAL	2 V 14TH RUDIMENTARY RIB(S)	Р
#5 SKELETAL 4 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A			
SKELETAL 5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A	SKELETAL	7	Р
#5 SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A	SKELETAL	4 V CERVICAL CENTRUM #1 OSSIFIED	Р
SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A A A A	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
SKELETAL 8 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A A A A		#5	
SKELETAL 12			P
V 14TH RUDIMENTARY RIB(S) RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A			P
RIGHT SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A A	SKELETAL	:	P
SKELETAL 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A			Р
#5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A A A A A A A A A A			_
NO REMARKABLE OBSERVATIONS EXTERNAL	SKELETAL		P
EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403			
VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13 SKELETAL 1,7,9,10,11 26403	EXTERNAL		
SKELETAL 1,7,9,10,11 26403 1 2 3 4 5 6 7 8 9 10 11 12 13 A A A/A A A A A A A A A A A A A A A A			
$A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A$			
$A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A$			
	26403		
SEX: F M M M F F M F F F M CEPHALIC: 2,4,6,8,10,12		SEX: F M M M F F M F M F F F M	

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 31 PROJECT NO.:WIL-402016 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

26403	(CONTINUED)		
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	8 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1
		#3 AND #4	
	SKELETAL	11 V 14TH RUDIMENTARY RIB(S)	Р
	SKELETAL	RIGHT 13 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	NO REMARKABLE OBSERVATIONS	P
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
	SKELETAL	1,2,3,4,6,7,9,10,12	
	DREEDIAL	1,2,3,4,0,1,3,10,12	
26414		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		$ \begin{smallmatrix} A & A & A & A & A & A & A & A & A & A$	
		SEX: M M F M M F F F F F F F F F F	
		CEPHALIC: 1,3,5,7,9,11,13,15	
			_
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
	SKELETAL	#5 6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
	SKELETAL	V SIERNBERA(E) #5 AND/OR #6 UNUSSIFIED #5	P
	SKELETAL	7 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	-
	SKELETAL	9 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	12 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 32

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

26414	(CONTINUED) SKELETAL SKELETAL	14 V CERVICAL CENTRUM #1 OSSIFIED 16 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P P
		V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,5,8,13,15	
26418	CEI	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A A A A A A A A A E A A E A A A A SEX: F M F F M M M M - M M M - M M M F HALIC: 1,3,5,7,10,12,15,17	
	SKELETAL	1 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
		CERVICAL #3 THROUGH #7, BILATERAL V STERNEBRA(E) #1,#2,#3 AND/OR #4 UNOSSIFIED	P
		#2 AND #4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL SKELETAL	9 EARLY RESORPTION 11 V CERVICAL CENTRUM #1 OSSIFIED	Р
	EXTERNAL	13 EARLY RESORPTION	_
	SKELETAL	17 V CERVICAL CENTRUM #1 OSSIFIED NO REMARKABLE OBSERVATIONS	Р
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,10,11,12,14,15,16,17,18 1,2,3,4,5,6,7,8,10,11,12,14,15,16,17,18 2,3,4,6,7,8,10,12,14,15,16,18	
26423	CEI	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A A A A A A E A A A A E A E A SEX: M M F M M M - F M F M - M - M PHALIC: 2,4,6,9,11,15	

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016

SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

DAMS FROM		DAY VEH. FETUS #	GRAD:
26423 (C	ONTINUED)		
	EXTERNAL	7 EARLY RESORPTION 12 EARLY RESORPTION 14 EARLY RESORPTION	
	EXTERNAL	12 EARLY RESORPTION	
	EXTERNAL	14 EARLY RESORPTION NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,8,9,10,11,13,15	
	VISCERAL	1,2,3,4,5,6,8,9,10,11,13,15	
	SKELETAL	1,2,3,4,5,6,8,9,10,11,13,15	
26438		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A A A A A A A A A A A A A	
		SEX: M F M M F M M M F F F M M	
		CEPHALIC: 1,3,5,7,9,11,13,15	
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	4 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	
		V 7TH CERVICAL RIB(S)	P
		PINPOINT, RIGHT	
	SKELETAL	7 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED 11 V 14TH RUDIMENTARY RIB(S)	P P
	SKELLIAL	BILATERAL	Р
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	14 V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15	
	VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15	
	SKELETAL	1,2,5,6,8,10,13,15	
26439		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
		A A A A A A E E/A A A A A A A A	
		SEX: M F M F M F M F F F F M M F	
		CEPHALIC: 2,4,6,8,12,14,16,18	

PAGE 33

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FROM GROUE	2:0 MG/KG/DAY VEH.	FETUS #	GRADE
26439 (CONTIN	······································		
	SKELETAL	1 V HYOID UNOSSIFIED	P
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
	SKELETAL	15 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	16 V 14TH RUDIMENTARY RIB(S)	Р
	SKELETAL	18 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	-
	SKELETAL	19 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19	
	VISCERAL	1,2,3,4,5,6,7,8,11,12,13,14,15,16,17,18,19	
	SKELETAL	2,3,4,5,6,7,8,11,12,13,14,17	
26442		1 2 3 4 5 6 7 8 9 10 11 12 13	
		A A A A A E E/ A A A A	
	SE:	: M F M F F M M M F F M	
	CEPHALI	: 1,3,5,9,11,13	
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	Р
		V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	
	SKELETAL	6 V BENT RIB(S)	1
		#5 THROUGH #11, RIGHT; #5 THROUGH #8 AND #11, LEFT	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
		N, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION	
		= VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESE	N.T.
SEA CODE: M = N	MALE, $F = FEMALE$, $- = 1$	OI APPLICABLE	

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 34

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 35

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS ______ DAMS FROM GROUP 2:0 MG/KG/DAY VEH. FETUS # _______ 26442 (CONTINUED) NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,9,10,11,12,13 VISCERAL 1,2,3,4,5,6,9,10,11,12,13 SKELETAL 1,2,4,5,9,10,11,12,13 26453 1 2 3 4 5 6 7 8 9 10 11 12 13 14 A A A A A A A A A A A A SEX: M F M M M F M F M F M M F M CEPHALIC: 2,4,6,8,10,12,14 SKELETAL 8 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED Ρ #5 NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,7,8,9,10,11,12,13,14 VISCERAL 1,2,3,4,5,6,7,8,9,10,11,12,13,14 SKELETAL 1,2,3,4,5,6,7,9,10,11,12,13,14

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 36

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP	3: 5 MG/KG/DAY	FETUS #	GRADE
26316		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A A A A A A A A A A A A A A A M M F M M M F M M M F F 1,3,5,7,9,11,13,15	
S	KELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
S	KELETAL	9 V 14TH RUDIMENTARY RIB(S) LEFT	P
S	KELETAL	11 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
S	KELETAL	14 V CERVICAL CENTRUM #1 OSSIFIED	P
S	KELETAL	15 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
		NO REMARKABLE OBSERVATIONS	
·	XTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15	
	ISCERAL KELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15 2,3,4,5,6,7,8,10,12,13	
26319		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
	G777	E A E A A A A A A A A A A A A A	
		- M - F F M M M M M M F M M 4,6,8,10,12,14	
	XTERNAL KELETAL	1 EARLY RESORPTION 2 V CERVICAL CENTRUM #1 OSSIFIED	P
E	XTERNAL	3 EARLY RESORPTION	
	KELETAL	4 V CERVICAL CENTRUM #1 OSSIFIED	P
S	KELETAL	7 V CERVICAL CENTRUM #1 OSSIFIED	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FROM (GROUP 3: 5 MG/KG/I	DAY FETUS #	GRADE
26319 (CC	ONTINUED)		
·	SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	13 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	14 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	15 V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	2,4,5,6,7,8,9,10,11,12,13,14,15	
	VISCERAL	2,4,5,6,7,8,9,10,11,12,13,14,15	
	SKELETAL	5,6,12	
26320		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		A A	
		SEX: M F F F M F - F F F M F F M F	
	(CEPHALIC: 1,3,5,8,10,12,14	
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	7 EARLY RESORPTION	
	SKELETAL	13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
		#5	
	SKELETAL	14 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,8,9,10,11,12,13,14,15	
	VISCERAL	1,2,3,4,5,6,8,9,10,11,12,13,14,15	
	SKELETAL	1,3,4,5,6,8,9,10,11,12,15	
26323		1 2 3 4 5 6 7 8 9 10 11 12	
		A A E A A A A A A A A A A A A A A A A A	
		SEX: M F - M M F M M F F - M	
	(CEPHALIC: 2,5,7,9,12	

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 37

TABLE A16 PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 38 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	ROM GROUP 3: 5 MG/K	G/DAY FETUS #	GRADE
26323	(CONTINUED)		
	EXTERNAL	3 EARLY RESORPTION	
	SKELETAL	4 V 14TH RUDIMENTARY RIB(S) BILATERAL	Р
	EXTERNAL	11 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,4,5,6,7,8,9,10,12	
	VISCERAL	1,2,4,5,6,7,8,9,10,12	
	SKELETAL	1,2,5,6,7,8,9,10,12	
26328		1 2 3 4 5 6 7 8 9 10 11 12 13	
		AAAAAAAAAA SEX: MFFMFFMFMFMF	
		SEA: M F F M F F F M F M F M F M F M F M F	
		CEPHALIC: 1,3,5,7,9,11,13	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
	SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13	
26329		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		A A A A A A A A A A A A A A A A A A A	
		SEX: M F F M M F M F F M F F M M F M	
		CEPHALIC: 2,4,6,8,10,12,14,16	
	SKELETAL	1 V 14TH RUDIMENTARY RIB(S)	Р
		LEFT	
	SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S)	P
	OKET EEN T	LEFT	D
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FI	ROM GROUP 3: 5 MG/1	KG/DAY FETUS #	GRADE
26329	(CONTINUED)		
	SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	
	SKELETAL	9 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	14 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	15 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	16 V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
	SKELETAL	2,4,6,7,11,13	
26341		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
20341		A A A A A E A E L/ A A A A A A	
		SEX: F M M F F F - F M M M M F M F	
		CEPHALIC: 2,4,6,11,13,15,17	
		CELIEBLE. 2,1,0,11,13,13,1.	
	SKELETAL	1 V 7TH CERVICAL RIB(S)	Р
		INTERMEDIATE, BILATERAL	
		V 25 PRESACRAL VERTEBRAE	P
		V REDUCED OSSIFICATION OF THE 13TH RIB(S)	1
		BILATERAL	
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	3 V 7TH CERVICAL RIB(S)	P
		PINPOINT, BILATERAL	-
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 39

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 40 PROJECT NO.:WIL-402016

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

26341 (CONTINUED)			
		#5	
SKELETAL		V 25 PRESACRAL VERTEBRAE	Р
SKELETAL	4	V 25 PRESACRAL VERTEBRAE	P
		V REDUCED OSSIFICATION OF THE 13TH RIB(S)	1
		BILATERAL	
EXTERNAL	7	EARLY RESORPTION	
SKELETAL	8	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
		#5	_
		V 7TH CERVICAL RIB(S)	P
		PINPOINT, BILATERAL	_
	•	V 25 PRESACRAL VERTEBRAE	P
EXTERNAL	9	EARLY RESORPTION	
EXTERNAL	10	LATE RESORPTION	
OVDI DELL	1.1	CROWN-RUMP LENGTH: 2.4 CM, MUMMIFIED	.
SKELETAL	11 12	V 25 PRESACRAL VERTEBRAE	P
SKELETAL	12	V 14TH RUDIMENTARY RIB(S) RIGHT	Р
SKELETAL	13	V 25 PRESACRAL VERTEBRAE	P
SKELETAL	13	V 25 PRESACRAL VERIEBRAE V 7TH CERVICAL RIB(S)	P
		PINPOINT, LEFT	P
SKELETAL	14	V 25 PRESACRAL VERTEBRAE	P
SKELETAL	14	V REDUCED OSSIFICATION OF THE 13TH RIB(S)	P 1
		RIGHT	1
		V 7TH CERVICAL RIB(S)	Þ
		PINPOINT, RIGHT	ř
SKELETAL	15	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
SKEHETAH	13	#5	ř
		V 7TH CERVICAL RIB(S)	P
		PINPOINT, BILATERAL	Ē
SKELETAL	16	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
SKEHETAL	10	V DILIMIDIMA (L) HO MODOLFIED	Ē

SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 41

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP	3: 5 MG/KG/DAY FETUS #	GRADI
26341 (CONTINU		
	#5	_
	SKELETAL 17 V 7TH CERVICAL RIB(S) PINPOINT, BILATERAL	P
	V REDUCED OSSIFICATION OF THE 13TH RIB(S)	2
	BILATERAL	
	V 25 PRESACRAL VERTEBRAE	P
	NO REMARKABLE OBSERVATIONS EXTERNAL 1,2,3,4,5,6,8,11,12,13,14,15,16,17	
	VISCERAL 1,2,3,4,5,6,8,11,12,13,14,15,16,17	
	SKELETAL 2,5,6	
26242	1 0 2 4 5 6 5 0 0 10 11 10 12 14 15 16	
26343	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A A A A A A A A A A A A A A A	
	SEX: M M M M M M M M M F F	
	CEPHALIC: 2,4,6,8,10,13,15	
	SKELETAL 7 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL 9 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL 11 EARLY RESORPTION	
	SKELETAL 12 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 13 V CERVICAL CENTRUM #1 OSSIFIED	P P
	SKELETAL 13 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S)	P
	RIGHT	-
	NO REMARKABLE OBSERVATIONS	
	EXTERNAL 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16	
	VISCERAL 1,2,3,4,5,6,7,8,9,10,12,13,14,15,16 SKELETAL 1,2,3,4,5,6,8,10,14,15,16	
	1,2,3,1,3,6,6,10,11,13,16	
26351	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
	AAAAAE/EAAAAAA SEX: MFFFFM MMMFMFMF	
	SEA: M F F F M M M F M F M F CEPHALIC: 2,4,6,10,12,14,16	

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 42

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 3: 5 MG/KG/	DAY FETUS #	GRAD
26351 (CONTINUED)		
SKELETAL	4 V 7TH CERVICAL RIB(S)	P
	INTERMEDIATE, RIGHT	
SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
EXTERNAL	7 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED	P
SKELETAL	15 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	1,2,3,4,5,6,9,10,11,12,13,14,15,16	
VISCERAL	1,2,3,4,5,6,9,10,11,12,13,14,15,16	
SKELETAL	1,2,3,6,9,10,12,13,14,16	
26354	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
	A A A A A E A A E A A L A A	
	SEX: M M M M F F M M F - M F - F F	
	CEPHALIC: 1,3,5,9,11,14,17	
VISCERAL	1 M SITUS INVERSUS	Р
	TRACHEA, ESOPHAGUS, HEART, GREAT AND MAJOR VESSELS, LUNGS,	
	LIVER, STOMACH, PANCREAS, SPLEEN, KIDNEYS, ADRENALS AND	
	INTESTINE LATERALLY TRANSPOSED	
SKELETAL	M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY	P
	RIGHT CERVICAL ARCH AND CENTRUM #4 ABSENT; RIGHT HALF OF	
	THORACIC CENTRUM #13 ABSENT; LEFT CERVICAL ARCHES #4 AND #5	
	FUSED; RIGHT THORACIC ARCH #13 SMALL; RIGHT HALF OF THORACIC	
	CENTRUM #12 SMALL; RIGHT LUMBAR ARCH AND HALF OF CENTRUM	
	#1 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
	#5 AND #6	Р

SKELETAL

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 43

______ DAMS FROM GROUP 3: 5 MG/KG/DAY FETUS # 26354 (CONTINUED) SKELETAL 2 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL V 14TH RUDIMENTARY RIB(S) BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT HALF OF LUMBAR CENTRUM #1 ABSENT; LEFT LUMBAR ARCH #1 SMALL; LEFT LUMBAR ARCH AND HALF OF CENTRUM #2 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED 3 V REDUCED OSSIFICATION OF THE 13TH RIB(S) SKELETAL 2 BILATERAL V 25 PRESACRAL VERTEBRAE SKELETAL 6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED Ρ V REDUCED OSSIFICATION OF THE 13TH RIB(S) 7 EXTERNAL EARLY RESORPTION EXTERNAL EARLY RESORPTION SKELETAL 10 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES CERVICAL #3 THROUGH #7, BILATERAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED Р #5 AND #6 EXTERNAL EARLY RESORPTION 12 SKELETAL 13 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) 1 #3 THROUGH #5 LATE RESORPTION EXTERNAL 15 CROWN-RUMP LENGTH: 2.3 CM, MUMMIFIED

> 16 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 44

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FI	ROM GROUP 3: 5 MG/KG/	DAY FETUS #	GRADE
26354	(CONTINUED)	NO REMARKABLE OBSERVATIONS	
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,9,10,11,13,14,16,17 2,3,4,5,6,9,10,11,13,14,16,17 4,5,9,11,14,17	
26358		1 2 3 4 5 6 7 8 9 10 11 12 13 14 A A A A A A A A A A A A A A A SEX: M F M M M F M F M F F F M F CEPHALIC: 1,3,5,7,9,11,13	
	SKELETAL	4 V CERVICAL CENTRUM #1 OSSIFIED NO REMARKABLE OBSERVATIONS	P
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,5,6,7,8,9,10,11,12,13,14	
26365		1 2 3 4 5 6 7 8 9 10 11 12 13 14 A A A A A A A A A A A A A SEX: F M F F F M F M M M M F M CEPHALIC: 2,4,6,8,10,12,14	
	SKELETAL	1 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) LEFT	P P
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL SKELETAL	6 V CERVICAL CENTRUM #1 OSSIFIED 7 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) LEFT	P P P
	SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	Р

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 3: 5 MG/KG/DA	y fetus #	GRADE
26365	(CONTINUED)		
	SKELETAL	8 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) LEFT	P P
	SKELETAL	13 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT	P P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,9,10,11,12,13,14 2,3,4,9,10,12,14	
26370		1 2 3 4 5 6 7 8 9 10 11 12 13 A A A A A A A E A/A A A SEX: M F M M M F M F - M M M F	
	CE	PHALIC: 1,3,5,7,10,12	
	SKELETAL SKELETAL	3 V CERVICAL CENTRUM #1 OSSIFIED 4 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) LEFT	P P P
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) BILATERAL	P P
	SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	11 M MICROPHTHALMIA AND/OR ANOPHTHALMIA RIGHT	
	VISCERAL	CONFIRMATION OF MICROPHTHALMIA	P

PAGE 45

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 46

		INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS	FAGE 40
DAMS F	ROM GROUP 3: 5 MG/KG	/DAY FETUS #	GRADE
26370	(CONTINUED)		
	SKELETAL	11 CONFIRMATION OF MICROPHTHALMIA	P
		ORBIT SMALLER THAN NORMAL, RIGHT	_
		V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1
	SKELETAL	#4 AND #5 12 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKEDETAL	NO REMARKABLE OBSERVATIONS	Ē
	EXTERNAL	1,2,3,4,5,6,7,8,10,12,13	
	VISCERAL	1,2,3,4,5,6,7,8,10,12,13	
	SKELETAL	1,2,6,7,10,13	
26378		1 2 3 4 5 6 7 8 9 10 11 12 13	
		A A A/A A A A A A E	
		SEX: FFFFFMFFFMFF-	
		CEPHALIC: 1,3,5,7,9,11	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	_
		V STERNEBRA(E) #1,#2,#3 AND/OR #4 UNOSSIFIED #2	Р
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
	SKELETAL	#5 7 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P P
	SKEDETAL	#5	r
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 47

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 3: 5 MG/KG	G/DAY FETUS #	
26378	(CONTINUED)		
20370	EXTERNAL	13 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12	
	VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12	
	SKELETAL	3,5,6,8,9	
26385		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		A E E A A A A A A A E A A A	
		SEX: F F M M F F M M M - M M F F	
		CEPHALIC: 4,6,8,10,13,15	
	SKELETAL	1 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S)	P
		RIGHT	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	_
	SKELETAL	5 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
	SKELETAL	7 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKEELIAE	V 14TH RUDIMENTARY RIB (S)	P
		RIGHT	
	SKELETAL	8 V 14TH RUDIMENTARY RIB(S)	P
	G1177 777 7	BILATERAL	_
	SKELETAL	10 V 14TH RUDIMENTARY RIB(S) LEFT	P
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	12 EARLY RESORPTION	1
	SKELETAL	15 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	

TABLE A16 PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 48 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM	GROUP 3: 5 MG/KG/DAY	FETUS #	GRADE
26385 ((CONTINUED) EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,4,5,6,7,8,9,10,11,13,14,15,16 1,4,5,6,7,8,9,10,11,13,14,15,16 4,6,9,13,14,16	
26388	СЕРН	1 2 3 4 5 6 7 8 9 10 11 12 13 14 A A A A A A A A A A A A A SEX: F M F M F M F F M M M F ALIC: 1,3,5,7,9,11,13	
	SKELETAL	9 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3	1
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) BILATERAL	P P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,9,10,11,12,13,14 1,2,3,4,5,6,7,8,11,12,13,14	
26397	СЕРН	1 2 3 4 5 6 7 8 9 10 11 12 13 A A E A A A/A A A A A A A SEX: F M - F F M F M M M F M F ALIC: 2,5,7,9,11,13	
	SKELETAL SKELETAL EXTERNAL	1 V CERVICAL CENTRUM #1 OSSIFIED 2 V CERVICAL CENTRUM #1 OSSIFIED 3 EARLY RESORPTION	P P
	SKELETAL	V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S)	P P

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 49

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	ROM GROUP 3: 5 MG/K	G/DAY FETUS #	GRADE
26397	(CONTINUED)		
	,	BILATERAL	
	SKELETAL	5 V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	
	SKELETAL	7 V 14TH RUDIMENTARY RIB(S)	P
		RIGHT	
	SKELETAL	10 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S)	P
		BILATERAL	
	SKELETAL	13 V CERVICAL CENTRUM #1 OSSIFIED	P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,4,5,6,7,8,9,10,11,12,13	
	VISCERAL	1,2,4,5,6,7,8,9,10,11,12,13	
	SKELETAL	6,8,9,11,12	
26402		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		A A A A A A A A A A A A	
		SEX: F M F M M M M F F F F M F F	
		CEPHALIC: 1,3,5,7,9,11,13	
	SKELETAL	1 V 14TH RUDIMENTARY RIB(S)	P
		RIGHT	
	SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S)	P
		LEFT	
	VISCERAL	9 RENAL PAPILLA(E) NOT FULLY DEVELOPED (WOO AND HOAR GRADE 1) BILATERAL	P
		V RENAL PAPILLA(E) NOT DEVELOPED AND/OR DISTENDED URETER(S)	1
		URETER, LEFT	
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED	P

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 50

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 3:	5 MG/KG/DAY FETUS #		GRADE
26402 (CONTINUED)	NO REMAR	KABLE OBSERVATIONS	
EXTER VISCE SKELE	RAL 1,2,3,	4,5,6,7,8,9,10,11,12,13,14 4,5,6,7,8,10,11,12,13,14 5,6,7,9,10,11,13,14	
26409	A A	3 4 5 6 7 8 9 10 11 12 13 14 15 A A A E A A A A A A A A F F M - F F F F F F F F 9,11,13,15	
SKELE		V CERVICAL CENTRUM #1 OSSIFIED	P
SKELE SKELE EXTER	TAL 5	V CERVICAL CENTRUM #1 OSSIFIED V CERVICAL CENTRUM #1 OSSIFIED EARLY RESORPTION	P P
SKELE		V CERVICAL CENTRUM #1 OSSIFIED V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P P
SKELE	TAL 10	V 14TH RUDIMENTARY RIB(S) LEFT	P
SKELE	TAL 11	V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) LEFT	P P
SKELE	TAL 12	V CERVICAL CENTRUM #1 OSSIFIED V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P P
SKELE	TAL 15	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		V CERVICAL CENTRUM #1 OSSIFIED	P

SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 51

DAMS FROM (GROUP 3: 5 MG/KG/DAY	FETUS #	GRADI
26409 (C	ONTINUED) EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,7,8,9,10,11,12,13,14,15 1,2,3,4,5,7,8,9,10,11,12,13,14,15 2,4,7,8,13,14	
26419	СЕРН	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A A A A A A A A A A A A A A A A A SEX: F F F F F M M F M M F F F M F F ALIC: 2,4,6,8,10,12,14,16	
	EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16	
26421	СЕРН	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 A A A A A A A E A E A A A A A E SEX: F F F F M M F - M - F M F F F F - ALIC: 2,4,6,9,12,14,16	
	EXTERNAL SKELETAL	8 EARLY RESORPTION 9 V 7TH CERVICAL RIB(S) PINPOINT, RIGHT V 14TH RUDIMENTARY RIB(S) LEFT	P P
	EXTERNAL EXTERNAL	10 EARLY RESORPTION 17 EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 52

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 3: 5 MG/KG/DAY	FETUS #	GRADE
26421 (CONTINUED) EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 1,2,3,4,5,6,7,9,11,12,13,14,15,16 1,2,3,4,5,6,7,9,11,12,13,14,15,16 1,2,3,4,5,6,7,11,12,13,14,15,16	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 A A E E A A/A A A A A E A A A : M M F F F F M F F - F M F : 1,5,7,9,11,14	
SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
EXTERNAL	3 EARLY RESORPTION	
EXTERNAL	4 EARLY RESORPTION	
SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
SKELETAL	7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
EXTERNAL	12 EARLY RESORPTION	
SKELETAL	13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
SKELETAL	14 V CERVICAL CENTRUM #1 OSSIFIED	P
SKELETAL	15 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	1,2,5,6,7,8,9,10,11,13,14,15	
VISCERAL SKELETAL	1,2,5,6,7,8,9,10,11,13,14,15 2,6,8,9,10	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 53

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM (GROUP 3: 5 MG/	KG/DAY FETUS #	GRADE
26435		1 2 3 4 5 6 7 8 9 10 11 12	
		A A A A A A A A A A	
		SEX: F M F F F M F F F F F M	
		CEPHALIC: 2,4,6,8,10,12	
	SKELETAL	5 V CERVICAL CENTRUM #1 OSSIFIED	Р
	SKELETAL	10 V 7TH CERVICAL RIB(S)	P
	CIVIL DEAT	PINPOINT, RIGHT	70
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED V 7TH CERVICAL RIB(S)	P P
		INTERMEDIATE, RIGHT; PINPOINT, LEFT	r
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12	
	VISCERAL	1,2,3,4,5,6,7,8,9,10,11,12	
	SKELETAL	1,2,3,4,6,7,8,9,12	
26437		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
		A A A A A A A E/ L A A A A A A	
		SEX: M M M M F F F F M M M F M F M	
		CEPHALIC: 2,4,6,8,12,14,16	
	SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	5 V 7TH CERVICAL RIB(S) PINPOINT, RIGHT	Р
	SKELETAL	7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 LATE RESORPTION	

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 54

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	OM GROUP 3: 5 MG/	G/DAY FETUS #	GRADE
26437	(CONTINUED)		
		CROWN-RUMP LENGTH: 3.5 CM, SE MALFORMATIONS	VERE AUTOLYSIS, NO APPARENT
	SKELETAL	12 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	SKELETAL	16 V STERNEBRA(E) #5 AND/OR #6 UNOSS #5	IFIED P
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,11,12,13,14,15,16,17	
	VISCERAL SKELETAL	1,2,3,4,5,6,7,8,11,12,13,14,15,16,17 1,2,4,6,8,11,13,14,15,17	
26454		1 2 3 4 5 6 7 8 9 10 11 12 13 14 1	
		E A A A A A A A A E/A A SEX: - M M F M M M F M M F - F F	A A A F M M
		SEA: - M M F M M F M M F - F F CEPHALIC: 2,4,6,8,10,13,15,17	r M M
	EXTERNAL	1 EARLY RESORPTION	
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSS	IFIED P
	SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSS #5	IFIED P
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSS #5	IFIED P
	SKELETAL	5 V STERNEBRA(E) #5 AND/OR #6 UNOSS #5	IFIED P
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSS #5	IFIED P
	SKELETAL	8 V STERNEBRA(E) #5 AND/OR #6 UNOSS #5	IFIED P
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSS	IFIED P

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM		ETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS	11.02
DAMS FROM GROUP 3: 5 MG/KG/DAY	FETUS #		GRADE
26454 (CONTINUED)		#5	
SKELETAL		V CERVICAL CENTRUM #1 OSSIFIED	P
EXTERNAL	12	EARLY RESORPTION	
SKELETAL	13	V CERVICAL CENTRUM #1 OSSIFIED	P
SKELETAL	15	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
SKELETAL	17	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	NO REMARI	KABLE OBSERVATIONS	
EXTERNAL VISCERAL SKELETAL		5,6,7,8,9,10,11,13,14,15,16,17 5,6,7,8,9,10,11,13,14,15,16,17 14,16	

PAGE 55

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 56

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 4: 25 MG/	/KG/DAY FETUS #	GRADI
26301	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A E E A E E A A E/ A E A A A E	
	SEX: M F M M - M - M F F M -	
	CEPHALIC: 4,8,12,14	
EXTERNAL	2 EARLY RESORPTION	
EXTERNAL	3 EARLY RESORPTION	
EXTERNAL	5 EARLY RESORPTION	
EXTERNAL	6 EARLY RESORPTION	
SKELETAL	8 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
EXTERNAL	9 EARLY RESORPTION	
EXTERNAL	11 EARLY RESORPTION	
SKELETAL	12 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3 THROUGH #5	2
SKELETAL	15 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
EXTERNAL	16 EARLY RESORPTION	
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	1,4,7,8,10,12,13,14,15	
VISCERAL	1,4,7,8,10,12,13,14,15	
SKELETAL	1,4,7,10,13,14	
26306	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	
	E A A A A A A A A A A A A A A A A A A A	
	SEX: - F F M M M M - F M M M F M F F M F M M M	
	CEPHALIC: 2,4,6,9,11,13,15,17,19,21	
EXTERNAL	1 EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

	ROM GROUP 4: 25 MG/K	G/DAY FETUS #	
26306	(CONTINUED)		
	SKELETAL	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	7 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL	1
	EXTERNAL	8 EARLY RESORPTION	
	SKELETAL	9 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	10 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL	1
	SKELETAL	12 V CERVICAL CENTRUM #1 OSSIFIED V 14TH RUDIMENTARY RIB(S) RIGHT	P P
	SKELETAL	13 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	16 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	17 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	18 V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	21 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21	
	VISCERAL	2,3,4,5,6,7,9,10,11,12,13,14,15,16,17,18,19,20,21	
	SKELETAL	4,5,6,11,14,15,19,20	
26313		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 A A E A A E/E E A E A A A A A E E SEX: M M - F M F - M M M F F F CEPHALIC: 2,5,11,13,15	

PAGE 57

TABLE A16 PROJECT NO.: WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 4:	25 MG/KG/DAY FETUS #	GRADE
26313 (CONTINUED)		·
EXTE	RNAL 3 EARLY RESORPTION	
EXTE	RNAL 6 EARLY RESORPTION	
EXTE	RNAL 7 EARLY RESORPTION	
EXTE	RNAL 8 EARLY RESORPTION	
EXTE	RNAL 10 EARLY RESORPTION	
EXTE	RNAL 17 EARLY RESORPTION	
EXTE		
	NO REMARKABLE OBSERVATIONS	
EXTE		
VISC		
SKEL	ETAL 1,2,4,5,9,11,12,13,14,15,16	
26324	1 2 3 4	
	A A E/ A	
	SEX: F M - M	
	CEPHALIC: 1,4	
EXTE	RNAL 3 EARLY RESORPTION	
	NO REMARKABLE OBSERVATIONS	
EXTE	RNAL 1,2,4	
VISC	ERAL 1,2,4	
SKEL	ETAL 1,2,4	
26325	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
	E A A E A A E E/ E A A A A E	
	SEX: - F M - M M F F F M F -	
	CEPHALIC: 3,6,11,13	
EXTE.	RNAL 1 EARLY RESORPTION	
SKEL	ETAL 2 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1

PAGE 58

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 59

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL. VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 4: 25 MG	:/KG/DAY FETUS #	GRADI
26325 (CONTINUED)		
	#2 THROUGH #5	
EXTERNAL	4 EARLY RESORPTION	
EXTERNAL	7 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
EXTERNAL	9 EARLY RESORPTION	
EXTERNAL	15 EARLY RESORPTION NO REMARKABLE OBSERVATIONS	
EXTERNAL	2,3,5,6,10,11,12,13,14	
VISCERAL	2,3,5,6,10,11,12,13,14	
SKELETAL	3,5,6,10,11,12,13,14	
26222	1 2 2 4 5 6 7 0 0 10 11 10 12 14 15 16	
26332	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 E A A E A A A/E E A A A E E A A	
	SEX: - M M - M F F F F M F F	
	CEPHALIC: 2,5,7,11,15	
EXTERNAL	1 EARLY RESORPTION	
EXTERNAL	4 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
EXTERNAL EXTERNAL	9 EARLY RESORPTION 13 EARLY RESORPTION	
EXTERNAL	14 EARLY RESORPTION	
EXILICIAL	NO REMARKABLE OBSERVATIONS	
EXTERNAL	2,3,5,6,7,10,11,12,15,16	
VISCERAL	2,3,5,6,7,10,11,12,15,16	
SKELETAL	2,3,5,6,7,10,11,12,15,16	
26334	1 2 3 4 5 6 7 8 9	
	A A E E/E A E E	
	SEX: M F F	
	CEPHALIC: 1,6	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 60

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	COM GROUP 4: 25 MG/KG/DA	FETUS #	GRADI
26334	(CONTINUED)		
	SKELETAL	2 V CERVICAL CENTRUM #1 OSSIFIED	Р
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	_
	SKELETAL	6 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL EXTERNAL	8 EARLY RESORPTION 9 EARLY RESORPTION	
	EXIERNAL	NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,6	
	VISCERAL	1,2,6	
	SKELETAL	1	
26345		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 E E E E E E E E E E E E E E A E	
		E E E E E E E E E E E E E E A E SEX: M -	
		SEA:	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL EXTERNAL	9 EARLY RESORPTION 10 EARLY RESORPTION	
	EXTERNAL	11 EARLY RESORPTION 11 EARLY RESORPTION	
	EXTERNAL	11 EARLY RESORPTION 12 EARLY RESORPTION	
	EXTERNAL	13 EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 61

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

	ROM GROUP 4: 25 MG/KG/DAY	FETUS #	GRADE
26345	(CONTINUED)		
	EXTERNAL	14 EARLY RESORPTION	
	EXTERNAL	15 EARLY RESORPTION	_
	SKELETAL	16 V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	17 EARLY RESORPTION	
	EXTERNAL	NO REMARKABLE OBSERVATIONS 16	
	VISCERAL	16	
	VISCERAL SKELETAL	16	
	SKELETAL		
26353		1 2 3 4 5 6 7 8 9 10 11 12 13	
20333			
		SEX: F F F F M	
	CEPH	ALIC: 5,12	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5 AND #6	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL EXTERNAL	10 EARLY RESORPTION 11 EARLY RESORPTION	
	EXIERNAL	NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,5,9,12,13	
	VISCERAL	1,5,9,12,13	
	SKELETAL	5,9,12,13	
	DIGHEIAH	5,7,12,13	
26357		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
		E E A A A A/E E A A A A A A A E E	
		SEX: M M M F F F F F M M F F	
	CEPH	ALIC: 5,7,11,13,15,17	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FI	ROM GROUP 4: 25 MG/	KG/DAY FETUS #		GRADE
26357	(CONTINUED)			
	EXTERNAL	1	EARLY RESORPTION	
	EXTERNAL	2	EARLY RESORPTION	
	EXTERNAL	3	EARLY RESORPTION	
	SKELETAL	4	V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL	6	V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3 THROUGH #5	1
	SKELETAL	7	V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	8	EARLY RESORPTION	
	EXTERNAL	9	EARLY RESORPTION	
	SKELETAL		V CERVICAL CENTRUM #1 OSSIFIED	P
	SKELETAL		V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	18	EARLY RESORPTION	
	EXTERNAL	19	EARLY RESORPTION	
			BLE OBSERVATIONS	
	EXTERNAL		10,11,12,13,14,15,16,17	
	VISCERAL		10, 11, 12, 13, 14, 15, 16, 17	
	SKELETAL	5,11,12,3	13,14,15,17	
26372			4 5 6 7 8 9 10 11 12 13 14 15 A A A A E/A A A A A E A	
		SEX: - M F		
		CEPHALIC: 2,4,6,9,1		
		CEPHALIC: 2,4,6,9,	11,13	
	EXTERNAL	1	EARLY RESORPTION	
	SKELETAL	4	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	EXTERNAL	8	EARLY RESORPTION	
	SKELETAL	12	V CERVICAL CENTRUM #1 OSSIFIED	P
	EXTERNAL	14	EARLY RESORPTION	

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 62

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 63

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FRO	OM GROUP 4: 25 MG/	KG/DAY FETUS #	GRADE
26372	(CONTINUED) EXTERNAL VISCERAL SKELETAL	NO REMARKABLE OBSERVATIONS 2,3,4,5,6,7,9,10,11,12,13,15 2,3,4,5,6,7,9,10,11,12,13,15 2,3,5,6,7,9,10,11,13,15	
26373		1 2 3 4 5 6 7 8 9 10 11 12 13 A D E A A A E/E E E A A A SEX: F M M M F F M CEPHALIC: 4,6,12	
	EXTERNAL	DEAD FETUS CROWN-RUMP LENGTH: 3.0 CM, WEIGHT: 2.67 G, FEMALE, NO APPARENT MALFORMATIONS	
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,4,5,6,11,12,13	
	VISCERAL SKELETAL	1,4,5,6,11,12,13 1,4,5,6,11,12,13	
26379		1 2 3 4 5 6 7 8 9 10 11 12 13 E E E E E E E E E E E E E	
		SEX: F	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL EXTERNAL	2 EARLY RESORPTION 3 EARLY RESORPTION	

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 64 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	OM GROUP 4: 25 MG/KG	/DAY FETUS #	GRADE
26379	(CONTINUED)		
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	11 EARLY RESORPTION	
	EXTERNAL	12 EARLY RESORPTION	
	EXTERNAL	13 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	10	
	VISCERAL	10	
	SKELETAL	10	
26387		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		A E E A A A E E E/ E E A A A A	
		SEX: F F M M F F M M	
		CEPHALIC: 4,6,13,15	
	SKELETAL	1 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
		#5	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	
	SKELETAL	4 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	5 V 14TH RUDIMENTARY RIB(S) LEFT	Р
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 65

26387	(CONTINUED)		
20307	EXTERNAL	10 EARLY RESORPTION	
	EXTERNAL	11 EARLY RESORPTION	
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	SKELETAL	13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,4,5,6,12,13,14,15	
	VISCERAL	1,4,5,6,12,13,14,15	
	SKELETAL	6,14,15	
26390		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		$E \ E \ A \ A \ A / E \ A \ A \ E \ A \ A \ A$	
		SEX: F F F F - M M - F F F M	
		CEPHALIC: 3,5,8,11,13	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	VISCERAL	3 V MAJOR BLOOD VESSEL VARIATION RIGHT CAROTID AND RIGHT SUBCLAVIAN ARISE INDEPENDENTLY FROM	P
		THE AORTIC ARCH (NO BRACHIOCEPHALIC TRUNK)	
	SKELETAL	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
	SKELETAL	#6 5 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
	OKEED ITHE	CERVICAL #3 THROUGH #7, BILATERAL	_
	SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
	SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 66 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 4: 25 MG/KG/	DAY FETUS #	GRADE
26390 (CONTINUED)		
	#5	
SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	Р
SKELETAL	14 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHE CERVICAL #4 THROUGH #7, BILATERAL	S 1
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	3,4,5,6,8,9,11,12,13,14	
VISCERAL	4,5,6,8,9,11,12,13,14	
SKELETAL	4,8,9,13	
26391	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
	${\tt E}$ ${\tt E}$ ${\tt A}$ ${\tt A}$ ${\tt E}$ ${\tt A}$ ${\tt E}$ ${\tt E}$ ${\tt E}$ ${\tt A}$ ${\tt E}$ ${\tt A}$ ${\tt A}$	
_	SEX: M M - M M F - M F	
C	EPHALIC: 4,10,16	
EXTERNAL	1 EARLY RESORPTION	
EXTERNAL	2 EARLY RESORPTION	
SKELETAL	3 V REDUCED OSSIFICATION OF THE SKULL	1
	NASAL, BILATERAL	
	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
EXTERNAL	5 EARLY RESORPTION	
EXTERNAL	7 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
EXTERNAL	9 EARLY RESORPTION	
SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	V CERVICAL CENTRUM #1 OSSIFIED	P
EXTERNAL	11 EARLY RESORPTION	
EXTERNAL	12 EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 67

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FF	ROM GROUP 4: 25 MG/KG/	DAY FETUS #		GRADE
26391	(CONTINUED)			
	EXTERNAL	13 E	EARLY RESORPTION	
	EXTERNAL	15 E	EARLY RESORPTION	
	SKELETAL	16 V 1	LATH RUDIMENTARY RIB(S) BILATERAL	Р
	SKELETAL	17 V S	STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
		NO REMARKABLE	OBSERVATIONS	
	EXTERNAL	3,4,6,10,14,	16,17	
	VISCERAL	3,4,6,10,14,	16,17	
	SKELETAL	4,6,14		
26396		1 2 3 4	5 6 7 8 9 10 11 12 13 14 15 16	
		EEEE		
		SEX:		
	EXTERNAL	1 I	EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL	3 I	EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL	15 E	EARLY RESORPTION	

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 68 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FF	ROM GROUP 4: 25 MG/	/KG/DAY FETUS #	GRADE
26396	(CONTINUED) EXTERNAL	16 EARLY RESORPTION	
26398		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 A A A A A A A A A A A A A A A A A SEX: M M M M F F M F M M M M F M - F CEPHALIC: 1,3,5,7,9,11,13,16	
	SKELETAL	5 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES CERVICAL #4 THROUGH #6, BILATERAL	1
	SKELETAL	7 V 14TH RUDIMENTARY RIB(S)	Р
	SKELETAL	11 V 14TH RUDIMENTARY RIB(S) RIGHT	Р
	SKELETAL	13 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3 THROUGH #5	1
	EXTERNAL	15 LATE RESORPTION CROWN-RUMP LENGTH: 1.7 CM, MUMMIFIED NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,16	
	VISCERAL SKELETAL	1,2,3,4,5,6,7,8,9,10,11,12,13,14,16 1,2,3,4,6,8,9,10,12,14,16	
26399		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 E E A E A A/A A A A A A A A E	
		SEX: M - F M M F M F M M M F F - CEPHALIC: 5,7,9,11,13,15	
	EXTERNAL EXTERNAL SKELETAL	1 EARLY RESORPTION 2 EARLY RESORPTION 3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 69

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP	4: 25 MG/KG/DF	AY FETUS #	GRADE
26399 (CONTINU	JED)		
		#5	
	EXTERNAL	4 EARLY RESORPTION	
	SKELETAL	8 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	
		V 27 PRESACRAL VERTEBRAE	P
	SKELETAL	12 V REDUCED OSSIFICATION OF THE SKULL	1
		NASAL, BILATERAL	D
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	SKELETAL	#5 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
	SKELLETAL	#5	P
	SKELETAL	15 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	_
	EXTERNAL	16 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	3,5,6,7,8,9,10,11,12,13,14,15	
	VISCERAL	3,5,6,7,8,9,10,11,12,13,14,15	
	SKELETAL	5,6,7,9,10,11,14	
26400		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
	CET	SEX: - M F F M M M M M F M M F F	
	CEF	PHALIC: 2,4,6,8,10,12,14	
	EXTERNAL	1 EARLY RESORPTION	
	SKELETAL	2 V 7TH CERVICAL RIB(S)	P
		PINPOINT, BILATERAL	
	SKELETAL	4 V REDUCED OSSIFICATION OF THE 13TH RIB(S)	1
		BILATERAL	
		V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FROM GROUP 4: 25		GRADE
26400 (CONTINUED)		
SKELETA	#3 THROUGH #5 L 14 V 7TH CERVICAL RIB(S)	P
SKELEIA	L 14 V 7TH CERVICAL RIB(S) PINPOINT, RIGHT	P
	NO REMARKABLE OBSERVATIONS	
EXTERNA		
VISCERA		
SKELETA	3,5,6,7,8,9,10,11,12,13	
26404	1 2 3 4 5 6 7 8 9 10 11 12 13 14	
	$E \ A \ A \ E \ A \ A \ A \ A \ A \ A \ A \ A \ A$	
	SEX: - F M - M M F M F F M F M M	
	CEPHALIC: 2,5,7,9,11,13	
EXTERNA	1 EARLY RESORPTION	
SKELETA	2 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
	#5	
EXTERNA		
SKELETA		P
SKELETA	S 9 V 14TH RUDIMENTARY RIB(S) BILATERAL	P
SKELETA	·	P
DICELLIA	#5	±
SKELETA		Р
	LEFT	
	NO REMARKABLE OBSERVATIONS	
EXTERNA		
VISCERA		
SKELETA	3,6,7,8,10,11,14	
26408	1 2 3 4 5 6 7 8 9 10 11 12 13	
	A E A E/E E E E A A A E	
	SEX: M - M M - F M -	
	CEPHALIC: 1,9,12	

PAGE 70

SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 71 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM	M GROUP 4: 25 MG/KG/DAY	FETUS #	GRADE
26408	(CONTINUED)		
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	SKELETAL	9 V 14TH RUDIMENTARY RIB(S) LEFT	P
	EXTERNAL	10 EARLY RESORPTION	
	SKELETAL	11 V CERVICAL CENTRUM #1 OSSIFIED	P
		V 14TH RUDIMENTARY RIB(S) LEFT	P
	EXTERNAL	13 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,3,9,11,12	
	VISCERAL	1,3,9,11,12	
	SKELETAL	1,3,12	
26415		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		A E A A A/ E E A E A A A A A	
		EX: M - F M F F - M M M M M	
	CEPHA	IC: 3,5,10,12,14	
	EXTERNAL	2 EARLY RESORPTION	
	SKELETAL	3 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIE	ED P
		#5	
	SKELETAL	4 V 14TH RUDIMENTARY RIB(S)	P
		LEFT	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 72

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

:6415 (CONTINUED)		
EXTERNAL	9 EARLY RESORPTION	
SKELETAL	13 V 14TH RUDIMENTARY RIB(S)	P
	LEFT	
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	1,3,4,5,8,10,11,12,13,14,15	
VISCERAL	1,3,4,5,8,10,11,12,13,14,15	
SKELETAL	1,5,8,10,11,12,14,15	
6425	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	
.0423		
	SEX: - F M M F F - M M	
CE	PHALIC: 4,11,17	
EXTERNAL	1 EARLY RESORPTION	
EXTERNAL	2 EARLY RESORPTION	
EXTERNAL	5 EARLY RESORPTION	
EXTERNAL	6 EARLY RESORPTION	
EXTERNAL	7 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
EXTERNAL	9 EARLY RESORPTION	
SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
SKELETAL	11 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
EXTERNAL	12 EARLY RESORPTION	
EXTERNAL	13 EARLY RESORPTION	
EXTERNAL	14 EARLY RESORPTION	
EXTERNAL	16 EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 73

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP	4: 25 MG/KG/DAY	FETUS #		GRADE
26425 (CONTINUE	ID)			
V	XTERNAL VISCERAL KELETAL	NO REMARKAN 3,4,10,11 3,4,10,11 3,4,15,17	,15,17,18	
26431	SEX	A A A	4 5 6 7 8 9 10 11 12 13 14 E/AAAAEALAAA - FMFF-F-MMM	
	CEPHALIC	: 2,5,7,10	13	
S	KELETAL	1	V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL	1
			V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
S	KELETAL	3	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
E	EXTERNAL	4	EARLY RESORPTION	
S	KELETAL	7	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
S	KELETAL	8	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
E	XTERNAL	9	EARLY RESORPTION	
S	KELETAL	10	V 14TH RUDIMENTARY RIB(S) LEFT	Р
Е	XTERNAL	11	LATE RESORPTION CROWN-RUMP LENGTH: 3.5 CM, SEVERE AUTOLYSIS, NO APPARENT MALFORMATIONS	
S	KELETAL	13	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
			V STERNEBRA(E) #1,#2,#3 AND/OR #4 UNOSSIFIED	P

PROJECT NO.:WIL-402016

SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FROM GROUP 4: 25 MG/KG/DAY	FETUS #			GRADE
26431 (CONTINUED)				
		#2		
SKELETAL		V STERNEBRA(E)	MALALIGNED (SLIGHT OR MODERATE)	1
		#2 AND #3		
SKELETAL	14	V STERNEBRA(E)	#5 AND/OR #6 UNOSSIFIED	P
		#5		
	NO REMARK	ABLE OBSERVATION	S	
EXTERNAL	1,2,3,5	,6,7,8,10,12,13,	14	
VISCERAL	1,2,3,5	,6,7,8,10,12,13,	14	
SKELETAL	2,5,6,1	.2		

PAGE 74

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 75

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 5: 50 MG	;/kg/day	GRADI
26311	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 E E E E E A A E/E A A E A E	
	SEX: M M F F - M -	
	CEPHALIC: 8,12	
EXTERNAL	1 EARLY RESORPTION	
EXTERNAL	2 EARLY RESORPTION	
EXTERNAL	3 EARLY RESORPTION	
EXTERNAL	4 EARLY RESORPTION	
EXTERNAL	5 EARLY RESORPTION	
EXTERNAL	6 EARLY RESORPTION	
SKELETAL	8 V CERVICAL CENTRUM #1 OSSIFIED	P
EXTERNAL	9 EARLY RESORPTION	
EXTERNAL	10 EARLY RESORPTION	
EXTERNAL	13 EARLY RESORPTION	_
SKELETAL	14 V 14TH RUDIMENTARY RIB(S) RIGHT	Р
EXTERNAL	15 EARLY RESORPTION	
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	7,8,11,12,14	
VISCERAL	7,8,11,12,14	
SKELETAL	7,11,12	
26326	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
	$\mathtt{E} \ \mathtt{E} \ \mathtt{E}$	
	SEX: F	
	CEPHALIC: 6	
EXTERNAL	1 EARLY RESORPTION	

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 76

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 5: 50 MG/K	KG/DAY FETUS #															 	 	 RADE
26326	(CONTINUED)																		
	EXTERNAL	2	EARL	Y RESOR	PTION														
	EXTERNAL	3	EARL	Y RESOR	PTION														
	EXTERNAL	4	EARL	Y RESOR	PTION														
	EXTERNAL	5	EARL	Y RESOR	PTION														
	SKELETAL	6	V REDU	CED OSS	IFICAT	'ION	OF TH	E VE	RTE	BRA:	LΑ	RCF	IES						2
			CE	RVICAL	#3 THR	OUGH	[#7,]	BILA	TER	AL									
	EXTERNAL	7	EARL	Y RESOR	PTION														
	EXTERNAL	8		Y RESOR															
	EXTERNAL	9	EARL	Y RESOR	PTION														
	EXTERNAL	10	EARL	Y RESOR	PTION														
	EXTERNAL	11		Y RESOR															
	EXTERNAL	12		Y RESOR															
	EXTERNAL	13	EARL	Y RESOR	PTION														
	EXTERNAL	14		Y RESOR															
	EXTERNAL	15		Y RESOR															
		NO REMAI	KABLE OBS	ERVATIO	NS														
	EXTERNAL	6																	
	VISCERAL	6																	
	SKELETAL																		
26333		1 2	3 4 5	5 7 8	9 10	11	12 13	14	15	16	17	1.8	19	20	21	22			
20333		E E		EEE			E/E		E		Ē	E	A						
		SEX:				F		_	_	_	_	_	F	_	F				
		CEPHALIC: 19,22				-							-		-	-			
	EXTERNAL	1	EARL	Y RESOR	PTION														
	EXTERNAL	2	EARL	Y RESOR	PTION														
	EXTERNAL	3	EARL	Y RESOR	PTION														
	EXTERNAL	4	EARL	Y RESOR	PTION														
	EXTERNAL	5	EARL	Y RESOR	PTION														

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 77

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

26222	(COMMITMED)			
26333	(CONTINUED) EXTERNAL	6	EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	SKELETAL		STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	12	#5 EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	SKELETAL	19 V	REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
			CERVICAL #3 THROUGH #7, BILATERAL	
		V	STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
			#5 AND #6	
	EXTERNAL		EARLY RESORPTION	
	SKELETAL	21 V	REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
			CERVICAL #3 THROUGH #7, BILATERAL	
	SKELETAL	22 V	REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
			CERVICAL #4 THROUGH #7, BILATERAL	
		NO REMARKABLE		
	EXTERNAL	11,19,21,22		
	VISCERAL SKELETAL	11,19,21,22		
26339		1 2 3 4	5 6 7 8 9 10 11 12 13	
		EEAE	E E E/E A E A A E	
		SEX: F -	F - M M -	
		CEPHALIC: 9,12		

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

AMS FROM	GROUP 5: 50 MG/KG	3/DAI FE100 #	GRADE
6339 (C	ONTINUED)		
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	SKELETAL	3 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
		CERVICAL #3 THROUGH #7, RIGHT; CERVICAL #4 THROUGH #7, LEFT	
		V 27 PRESACRAL VERTEBRAE	P
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	SKELETAL	9 V 14TH RUDIMENTARY RIB(S) LEFT	P
	EXTERNAL	10 EARLY RESORPTION	
	SKELETAL	12 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES CERVICAL #3 THROUGH #7, BILATERAL	1
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	P
	EXTERNAL	13 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	3,9,11,12	
	VISCERAL	3,9,11,12	
	SKELETAL	11	
6347		1 2 3 4 5 6 7 8 9 10 11 12 13	
		SEX:	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	

PAGE 78

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 79 PROJECT NO.:WIL-402016 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

	OM GROUP 5: 50 MG/		ETUS #		RADE
26347	(CONTINUED)				
	EXTERNAL		4		
	EXTERNAL		5		
	EXTERNAL		6		
	EXTERNAL		7	EARLY RESORPTION	
	EXTERNAL		8		
	EXTERNAL		9		
	EXTERNAL		10		
	EXTERNAL EXTERNAL		11 12		
	EXTERNAL		13		
	EATERNAL		13	EARLY RESORPTION	
26356			1 2	3 4 5 6 7 8 9 10 11 12 13 14	
			E E	$E \; E \; E \; A \; E \; A \; E \; A \; E$	
		SEX:		F M - F F -	
		CEPHALIC:	6,12		
	EXTERNAL		1	EARLY RESORPTION	
	EXTERNAL		2	EARLY RESORPTION	
	EXTERNAL		3	EARLY RESORPTION	
	EXTERNAL		4		
	EXTERNAL		5		
	SKELETAL		6	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
				#5	_
			_	V 27 PRESACRAL VERTEBRAE	Р
	EXTERNAL		7		
	EXTERNAL EXTERNAL		9		
			10		ъ
	SKELETAL		10	V 14TH RUDIMENTARY RIB(S) LEFT	P
	EXTERNAL		11		

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED
SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROU	P 5: 50 MG/KG/DA	Y FETUS #	GRAD
26356 (CONTI	NUED)		
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
	SKELETAL	#5 AND #6 13 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
		#5 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL	1
	EXTERNAL	14 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	6,10,12,13	
	VISCERAL SKELETAL	6,10,12,13	
26360		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17	
	CEP	SEX: F - M HALIC: 12	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	
	EXTERNAL EXTERNAL	6 EARLY RESORPTION 7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
	EXTERNAL	11 EARLY RESORPTION	
	SKELETAL	12 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

PAGE 80

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FI	ROM GROUP 5: 50 MG/	KG/DAY FETUS #		GRADE
26360	(CONTINUED)			
	EXTERNAL	13	EARLY RESORPTION	
	SKELETAL	14	V REDUCED OSSIFICATION OF THE SKULL	1
			NASAL, BILATERAL	_
			V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	EXTERNAL	15	EARLY RESORPTION	
	EXTERNAL	16	EARLY RESORPTION	
	EXTERNAL	17	LATE RESORPTION	
			CROWN-RUMP LENGTH: 2.4 CM, MUMMIFIED	
			ABLE OBSERVATIONS	
	EXTERNAL	12,14		
	VISCERAL	12,14		
	SKELETAL			
26376		1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	
		SEX:	F	
		CEPHALIC: 12		
	EXTERNAL	1	EARLY RESORPTION	
	EXTERNAL	2	EARLY RESORPTION	
	EXTERNAL	3	EARLY RESORPTION	
	EXTERNAL	4	EARLY RESORPTION	
	EXTERNAL	5	EARLY RESORPTION	
	EXTERNAL	6	EARLY RESORPTION	
	EXTERNAL	7	EARLY RESORPTION	
	EXTERNAL EXTERNAL	8	EARLY RESORPTION EARLY RESORPTION	
	EXTERNAL	10	EARLY RESORPTION EARLY RESORPTION	
	EXTERNAL	11	EARLY RESORPTION	

PAGE 81

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 82 PROJECT NO.:WIL-402016

		Y FETUS #		GRADE
26376	(CONTINUED)			
	SKELETAL	12	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	13	EARLY RESORPTION	
	EXTERNAL	14	EARLY RESORPTION	
	EXTERNAL	15	LATE RESORPTION	
			CROWN-RUMP LENGTH: 3.4 CM, SLIGHT AUTOLYSIS, NO APPARENT	
			MALFORMATIONS	
	EXTERNAL	16	EARLY RESORPTION	
	EXTERNAL	17	EARLY RESORPTION	
	EXTERNAL	18	EARLY RESORPTION	
	EXTERNAL	19	EARLY RESORPTION	
			BLE OBSERVATIONS	
	EXTERNAL	12		
	VISCERAL	12		
	SKELETAL			
26377		1 2 3	4 5 6 7 8 9 10 11 12	
10377			E A A A/E E E E E	
		SEX: F		
	CEPI	HALIC: 5,7		
	SKELETAL	1	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	Р
	SKEDETAD	_	#5	F
	EXTERNAL	2	EARLY RESORPTION	
	EXTERNAL	3	EARLY RESORPTION	
	EXTERNAL	4	EARLY RESORPTION	
	SKELETAL	5	V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
			CERVICAL #5 THROUGH #7, BILATERAL	-
			V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE) #3 AND #4	1

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 83

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FI	ROM GROUP 5: 50 MG/	KG/DAY FETUS #	GRADE
26377	(CONTINUED)		
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
	EXTERNAL EXTERNAL	11 EARLY RESORPTION 12 EARLY RESORPTION	
	EXIERNAL	NO REMARKABLE OBSERVATIONS	
	EXTERNAL	1,5,6,7	
	VISCERAL	1,5,6,7	
	SKELETAL	6,7	
0.6000			
26382		1 2 E E/	
		SEX:	
		521.	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
26389		1 2 3 4 5 6 7 8 9 10 11 12 13	
20309			
		SEX: M F	
		CEPHALIC: 10	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL SKELETAL	3 EARLY RESORPTION 4 V REDUCED OSSIFICATION OF THE SKULL	1
	SKELLIAL	NASAL, BILATERAL; INTERPARIETAL; ZYGOMATIC ARCH, BILATE	——————————————————————————————————————
		V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
		CERVICAL #3 THROUGH #7, BILATERAL	
		V PUBIS UNOSSIFIED	P

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 84 INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 5: 50 MG/	/KG/DAY FETUS #	GRADE
26389 (CONTINUED)		
	BILATERAL	
EXTERNAL	5 EARLY RESORPTION	
EXTERNAL	6 EARLY RESORPTION	
EXTERNAL	7 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
EXTERNAL	9 EARLY RESORPTION	
SKELETAL	10 V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
	CERVICAL #3 THROUGH #7, BILATERAL	To the state of th
	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	Р
	TO AND TO TO THE V PUBLS UNOSSIFIED	Р
	V POBIS UNOSSIFIED BILATERAL	P
EXTERNAL	11 EARLY RESORPTION	
EXTERNAL	12 EARLY RESORPTION	
EXTERNAL	13 EARLY RESORPTION	
	NO REMARKABLE OBSERVATIONS	
EXTERNAL	4,10	
VISCERAL	4,10	
SKELETAL		
0.62.02	1 0 0 4 5 6 5 0 0 10 11 10 10 14 15 16 15 10 10	
26393	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 A E E E A A E A E/E E E A A E A A E	
	SEX: M F M - F F M - M M -	
	CEPHALIC: 6,9,15,18	
	CEFIAITC. 0, 3, 13, 10	
EXTERNAL	2 EARLY RESORPTION	
EXTERNAL	3 EARLY RESORPTION	
EXTERNAL	4 EARLY RESORPTION	
EXTERNAL	5 EARLY RESORPTION	
SKELETAL	6 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 85

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

SKELETAL 7	GRADI
SKELETAL 7	
NASAL, BILATERAL EXTERNAL 8	
SKELETAL 9	1
EXTERNAL 10 EARLY RESORPTION EXTERNAL 11 EARLY RESORPTION EXTERNAL 12 EARLY RESORPTION EXTERNAL 13 EARLY RESORPTION EXTERNAL 13 EARLY RESORPTION SKELETAL 14 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
EXTERNAL 11 EARLY RESORPTION EXTERNAL 12 EARLY RESORPTION EXTERNAL 13 EARLY RESORPTION SKELETAL 13 EARLY RESORPTION SKELETAL 14 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 EXTERNAL 1,6,7,9,14,15,17,18	P
EXTERNAL 12 EARLY RESORPTION EXTERNAL 13 EARLY RESORPTION SKELETAL 14 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKAGE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
EXTERNAL SKELETAL 13 EARLY RESORPTION SKELETAL 14 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
SKELETAL 14 V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
NASAL, BILATERAL M VERTEBRAL ANOMALY WITH OR WITHOUT ASSOCIATED RIB ANOMALY LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
LEFT ARCH AND HALF OF SACRAL CENTRUM #2 ABSENT; LEFT SACRAL ARCH #1 LARGER AND LOCATED MORE POSTERIOR THAN NORMAL; LEFT SACRAL ARCH #3 LARGER AND LOCATED MORE ANTERIOR THAN NORMAL V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	1
#5 EXTERNAL 16 EARLY RESORPTION SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	P
SKELETAL 18 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	P
#5 EXTERNAL 19 EARLY RESORPTION NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
NO REMARKABLE OBSERVATIONS EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	P
EXTERNAL 1,6,7,9,14,15,17,18 VISCERAL 1,6,7,9,14,15,17,18	
VISCERAL 1,6,7,9,14,15,17,18	
26394 1 2 3 4 5 6 7 8 9 10 11 12 13 14	
E E E E E E E E E E E E E E E E E E E	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FF	OM GROUP 5: 50 MG/KG/DAY	FETUS #		GRADE
26394	(CONTINUED)			
	EXTERNAL	1 2	EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL	3	EARLY RESORPTION	
	EXTERNAL	4	EARLY RESORPTION	
	EXTERNAL	5 6	EARLY RESORPTION	
	EXTERNAL		EARLY RESORPTION	
	EXTERNAL	7	EARLY RESORPTION	
	EXTERNAL	8	EARLY RESORPTION	
	EXTERNAL	9	EARLY RESORPTION	
	EXTERNAL	10	EARLY RESORPTION	
	EXTERNAL	11	EARLY RESORPTION	
	EXTERNAL	12	EARLY RESORPTION	
	EXTERNAL	13	EARLY RESORPTION	
	EXTERNAL	14	EARLY RESORPTION	
26406			4 5 6 7 8 9 10 11 12 13	
		E E E	E E E E E E L E E	
	SE	EX:		
	EXTERNAL	1	EARLY RESORPTION	
	EXTERNAL	2	EARLY RESORPTION	
	EXTERNAL	3	EARLY RESORPTION	
	EXTERNAL	4	EARLY RESORPTION	
	EXTERNAL	5	EARLY RESORPTION	
	EXTERNAL	6	EARLY RESORPTION	
	EXTERNAL	7	EARLY RESORPTION	
	EXTERNAL	8	EARLY RESORPTION	
	EXTERNAL	9	EARLY RESORPTION	
	EXTERNAL	10	EARLY RESORPTION	
	EXTERNAL	11	LATE RESORPTION	

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 86

TABLE A16 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PROJECT NO.:WIL-402016 PAGE 87

	ROM GROUP 5: 50 MG/	, kej bri	GRADE
26406	(CONTINUED)	CROWN-RUMP LENGTH: 2.5 CM, MUMMIFIED	
	EXTERNAL	12 EARLY RESORPTION	
	EXTERNAL	13 EARLY RESORPTION	
26413		1 2 3 4 5 6 7 8 9 10 11 12 13 14	
		E E E E E E E E E E E E E E SEX:	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION 4 EARLY RESORPTION	
	EXTERNAL EXTERNAL		
	EXTERNAL	5 EARLY RESORPTION 6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	
	EXTERNAL	9 EARLY RESORPTION	
	EXTERNAL	10 EARLY RESORPTION	
	EXTERNAL	11 EARLY RESORPTION	
	EXTERNAL	12 EARLY RESORPTION	
	EXTERNAL	13 EARLY RESORPTION	
	EXTERNAL	14 EARLY RESORPTION	
26416		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	
		$E \ A \ A \ E \ A \ A \ A \ A \ A \ A \ A \ A \ A \ A$	
		SEX: - M M - M M M F - F M F M - M	
		CEPHALIC: 2,5,7,10,12,15	
	EXTERNAL	1 EARLY RESORPTION	
	SKELETAL	2 V CERVICAL CENTRUM #1 OSSIFIED	P

EXTERNAL

EXTERNAL

TABLE A16 PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

8

9

______ DAMS FROM GROUP 5: 50 MG/KG/DAY FETUS # 26416 (CONTINUED) SKELETAL 3 V CERVICAL CENTRUM #1 OSSIFIED EXTERNAL 4 EARLY RESORPTION 5 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED SKELETAL 6 V CERVICAL CENTRUM #1 OSSIFIED
7 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED SKELETAL Ρ SKELETAL Ρ #5 AND #6 9 EARLY RESORPTION
10 V CERVICAL CENTRUM #1 OSSIFIED EXTERNAL SKELETAL 11 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL Ρ 13 V CERVICAL CENTRUM #1 OSSIFIED SKELETAL 14 LATE RESORPTION EXTERNAL CROWN-RUMP LENGTH: 4.0 CM, MUMMIFIED NO REMARKABLE OBSERVATIONS 2,3,5,6,7,8,10,11,12,13,15 VISCERAL 2,3,5,6,7,8,10,11,12,13,15 SKELETAL 8,12,15 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 SEX: - - - M M - - - - M M - -CEPHALIC: 5,14 1 EARLY RESORPTION 2 EARLY RESORPTION EXTERNAL EARLY RESORPTION EXTERNAL EARLY RESORPTION 3 EXTERNAL EARLY RESORPTION EXTERNAL 6 EARLY RESORPTION EXTERNAL 7 EARLY RESORPTION

PAGE 88

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

EARLY RESORPTION

TABLE A16

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 89

SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FR	OM GROUP 5: 50 MG/KG/DAY	FETUS #	GRADE
26427	(CONTINUED)		
	SKELETAL	10 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
	EXTERNAL	11 EARLY RESORPTION	
	EXTERNAL	12 EARLY RESORPTION	
	EXTERNAL	13 EARLY RESORPTION	
	SKELETAL	14 V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1
		#3 THROUGH #5	
		V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5	
	SKELETAL	15 V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED	P
		#5 AND #6	
	EXTERNAL	16 EARLY RESORPTION	
	EXTERNAL	17 EARLY RESORPTION	
		NO REMARKABLE OBSERVATIONS	
	EXTERNAL	4,5,10,14,15	
	VISCERAL	4,5,10,14,15	
	SKELETAL	4,5	
26428		1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	
		$\mathtt{E} \ \mathtt{E} \ \mathtt{E}$	
		SEX:	
	EXTERNAL	1 EARLY RESORPTION	
	EXTERNAL	2 EARLY RESORPTION	
	EXTERNAL	3 EARLY RESORPTION	
	EXTERNAL	4 EARLY RESORPTION	
	EXTERNAL	5 EARLY RESORPTION	
	EXTERNAL	6 EARLY RESORPTION	
	EXTERNAL	7 EARLY RESORPTION	
	EXTERNAL	8 EARLY RESORPTION	

26443

PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED SPONSOR:AMERICAN PETROLEUM INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS FROM GROUP 5: 50 MG/KG/DAY	FETUS #	GRADI
26428 (CONTINUED)		
EXTERNAL	9 EARLY RESORPTION	
EXTERNAL	10 EARLY RESORPTION	
EXTERNAL	11 EARLY RESORPTION	
EXTERNAL	12 EARLY RESORPTION	
EXTERNAL	13 EARLY RESORPTION	
EXTERNAL	14 EARLY RESORPTION	
EXTERNAL	15 EARLY RESORPTION	
EXTERNAL	16 EARLY RESORPTION	
26436	1 2 3 4 5 6 7 8 9 10 11 12 13	
20430		
S	X:	
EXTERNAL	1 EARLY RESORPTION	
EXTERNAL	2 EARLY RESORPTION	
EXTERNAL	3 EARLY RESORPTION	
EXTERNAL	4 EARLY RESORPTION	
EXTERNAL	5 EARLY RESORPTION	
EXTERNAL	6 EARLY RESORPTION	
EXTERNAL	7 EARLY RESORPTION	
EXTERNAL	8 EARLY RESORPTION	
EXTERNAL	9 EARLY RESORPTION	
EXTERNAL	10 EARLY RESORPTION	
EXTERNAL	11 EARLY RESORPTION	
EXTERNAL	12 EARLY RESORPTION	
EXTERNAL	13 EARLY RESORPTION	

TABLE A16

PAGE 90

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

CEPHALIC: 3,12

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FROM	M GROUP 5: 50 MG/KG/DAY	FETUS #		GRADE
26443	(CONTINUED)			
	SKELETAL	1	V REDUCED OSSIFICATION OF THE VERTEBRAL ARCHES	1
			CERVICAL #5 THROUGH #7, BILATERAL	
			V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	Р
	EXTERNAL	2	EARLY RESORPTION	
	SKELETAL	3	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	4	EARLY RESORPTION	
	EXTERNAL	5	EARLY RESORPTION	
	EXTERNAL	6	EARLY RESORPTION	
	EXTERNAL	7	EARLY RESORPTION	
	SKELETAL	8	V STERNEBRA(E) MALALIGNED(SLIGHT OR MODERATE)	1
			#5	
	EXTERNAL	9	EARLY RESORPTION	
	EXTERNAL	10	EARLY RESORPTION	
	EXTERNAL	11	EARLY RESORPTION	
	SKELETAL	12	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	Р
	EXTERNAL	13	EARLY RESORPTION	
	EXTERNAL	14	EARLY RESORPTION	
	EXTERNAL	15	EARLY RESORPTION	
		NO REMARK	BLE OBSERVATIONS	
	EXTERNAL	1,3,8,1		
	VISCERAL	1,3,8,1		
	SKELETAL			
26444		1 2 3	4 5 6 7 8 9 10 11 12 13 14 15 16	

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

PAGE 91

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

SEX: - - - - - - -

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED PAGE 92

INDIVIDUAL FETAL EXTERNAL, VISCERAL AND SKELETAL FINDINGS

DAMS F	ROM GROUP 5: 50 MG/KG/DAY	F	FETUS #		GR	RADE
26444	(CONTINUED)					
	EXTERNAL		1		EARLY RESORPTION	
	EXTERNAL		2		EARLY RESORPTION	
	EXTERNAL		3		EARLY RESORPTION	
	EXTERNAL		4		EARLY RESORPTION	
	EXTERNAL		5		EARLY RESORPTION	
	EXTERNAL		6		EARLY RESORPTION	
	EXTERNAL		7		EARLY RESORPTION	
	EXTERNAL		8		EARLY RESORPTION	
	EXTERNAL		9		EARLY RESORPTION	
	EXTERNAL		10		EARLY RESORPTION	
	EXTERNAL		11		EARLY RESORPTION	
	EXTERNAL		12		EARLY RESORPTION	
	EXTERNAL		13		EARLY RESORPTION	
	EXTERNAL		14		EARLY RESORPTION	
	EXTERNAL		15		EARLY RESORPTION	
	EXTERNAL		16		EARLY RESORPTION	
26448			1 2	3	4 5 6 7 8 9 10 11 12 13 14 15 16 17	
		SEX:			F F F M -	
	СЕРН	ALIC:	11,13			
	EXTERNAL		1		EARLY RESORPTION	
	EXTERNAL		2		EARLY RESORPTION	
	EXTERNAL		3		EARLY RESORPTION	
	EXTERNAL		4		EARLY RESORPTION	
	EXTERNAL		5		EARLY RESORPTION	
	EXTERNAL		6		LATE RESORPTION	
					CROWN-RUMP LENGTH: 2.0 CM, MUMMIFIED	
	EXTERNAL		7		EARLY RESORPTION	

TABLE A16
PROJECT NO.:WIL-402016 RAT DERMAL DEV TOX STUDY OF CLARIFIED OILS, CATALYTIC CRACKED

DAMS FROM G	ROUP 5: 50 MG/KG/DA	Y FETUS #		GRAD
26448 (CO	NTINUED)			
	EXTERNAL	8	EARLY RESORPTION	
	EXTERNAL	9	EARLY RESORPTION	
	EXTERNAL	10	EARLY RESORPTION	
	SKELETAL	11	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5 AND #6	Р
	SKELETAL	12	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #5	P
			V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL	1
	SKELETAL	13	V STERNEBRA(E) #5 AND/OR #6 UNOSSIFIED #6	P
	EXTERNAL	14	EARLY RESORPTION	
	EXTERNAL	15	EARLY RESORPTION	
	SKELETAL	16	V REDUCED OSSIFICATION OF THE SKULL NASAL, BILATERAL	1
	EXTERNAL	17	LATE RESORPTION CROWN-RUMP LENGTH: 3.2 CM, SEVERE AUTOLYSIS, NO APPARENT MALFORMATIONS	
		NO REMARK	ABLE OBSERVATIONS	
	EXTERNAL	11,12,1	3,16	
	VISCERAL	11,12,1	3,16	
	SKELETAL			

A = VIABLE FETUS, E = EARLY RESORPTION, L = LATE RESORPTION, D = DEAD FETUS, "/" DENOTES CERVIX POSITION
OBSERVATION CODE: M = MALFORMATION, V = VARIATION GRADE CODE: 1 = SLIGHT, 2 = MODERATE, 3 = MARKED, P = PRESENT
SEX CODE: M = MALE, F = FEMALE, - = NOT APPLICABLE

PFETv4.14 12/07/2011 R:12/16/2011

PAGE 93